Skip to main content
Log in

The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways

  • Reproductive physiology and disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Endometrial receptivity (ER), a pivotal event for successful embryo implantation, refers to the capacity of endometrium to allow the adhesion of the trophectoderm of the blastocyst to endometrial cells. In this paper, we set to elucidate whether the peptides encoded by lncRNAs could influence trophoblast cells’ adhesion to endometrial cells.

Methods

WGCNA construction and bioinformatics were used to find out the ER-related lncRNAs with coding potential. Protein analysis was done by immunoblotting and immunofluorescence (IF) microscopy. CCK-8 and Calcein-AM/PI double staining assays were employed to evaluate cell viability. The effect of the peptide on trophoblast spheroids’ adhesion to endometrial cells was evaluated. The RNA sequencing (RNA-seq) analysis was applied to identify downstream molecular processes.

Results

lncRNA LINC00339 was found to be related to ER development and it had been predicted to have protein-coding potential. LINC00339 had high occupancy of ribosomes and was confirmed to encode a 49-aa peptide (named LINC00339-205-49aa). LINC00339-205-49aa could promote the attachment of JAR trophoblast spheroids to Ishikawa endometrial cells in vitro. LINC00339-205-49aa also upregulated the expression of E-cadherin in Ishikawa cells. Mechanistically, MAPK and PI3K-Akt signaling pathways were involved in the modulation of LINC00339-205-49aa, which were activated by LINC00339-205-49aa in Ishikawa cells.

Conclusion

These data demonstrate that a previously uncharacterized peptide encoded by lncRNA LINC00339 has the ability to enhance JAR trophoblast spheroids’ adhesion to Ishikawa endometrial cells, highlighting a new opportunity for the development of drugs to improve ER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–98.

    Article  PubMed  CAS  Google Scholar 

  2. Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111(4):611–7.

    Article  PubMed  Google Scholar 

  3. Neykova K, Tosto V, Giardina I, Tsibizova V, Vakrilov G. Endometrial receptivity and pregnancy outcome. The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstet. 2022;35(13):2591–605.

    Article  Google Scholar 

  4. Baron C, Haouzi D, Gala A, Ferrieres-Hoa A, Vintejoux E, Brouillet S, Hamamah S. Endometrial receptivity in assisted reproductive techniques: an aspect to investigate in embryo implantation failure. Gynecologie, Obstetrique, Fertilite & Senologie. 2021;49(2):128–36.

    Article  CAS  Google Scholar 

  5. Scott RT Jr. Endometrial receptivity screening in the general assisted reproductive technology population. Fertil Steril. 2021;115(4):895–6.

    Article  PubMed  Google Scholar 

  6. Bridges MC, Daulagala AC, Kourtidis A. LNCcation: lncRNA localization and function. J Cell Biol. 2021;220(2):e202009045.

  7. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cellular and molecular life sciences : CMLS. 2016;73(13):2491–509.

    Article  PubMed  CAS  Google Scholar 

  8. Aljubran F, Nothnick WB. Long non-coding RNAs in endometrial physiology and pathophysiology. Mol Cell Endocrinol. 2021;525:111190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Zhang L, Yu Z, Qu Q, Li X, Lu X, Zhang H. Exosomal lncRNA HOTAIR promotes the progression and angiogenesis of endometriosis via the miR-761/HDAC1 axis and activation of STAT3-mediated inflammation. Int J Nanomedicine. 2022;17:1155–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Zhao H, Hu S, Qi J, Wang Y, Ding Y, Zhu Q, He Y, Lu Y, Yao Y, Wang S, et al. Increased expression of HOXA11-AS attenuates endometrial decidualization in recurrent implantation failure patients. Mol Therapy : J Am Soc Gene Ther. 2022;30(4):1706–20.

    Article  CAS  Google Scholar 

  11. Feng C, Shen JM, Lv PP, Jin M, Wang LQ, Rao JP, Feng L. Construction of implantation failure related lncRNA-mRNA network and identification of lncRNA biomarkers for predicting endometrial receptivity. Int J Biol Sci. 2018;14(10):1361–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Wang Y, Hu S, Yao G, Zhu Q, He Y, Lu Y, Qi J, Xu R, Ding Y, Li J, et al. A novel molecule in human cyclic endometrium: lncRNA TUNAR is involved in embryo implantation. Front Physiol. 2020;11:587448.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Xing J, Liu H, Jiang W, Wang L. LncRNA-encoded peptide: functions and predicting methods. Front Oncol. 2020;10:622294.

    Article  PubMed  Google Scholar 

  14. Wu P, Mo Y, Peng M, Tang T, Zhong Y, Deng X, Xiong F, Guo C, Wu X, Li Y, et al. Emerging role of tumor-related functional peptides encoded by lncRNA and circRNA. Mol Cancer. 2020;19(1):22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Cheng R, Li F, Zhang M, Xia X, Wu J, Gao X, Zhou H, Zhang Z, Huang N, Yang X, et al. A novel protein RASON encoded by a lncRNA controls oncogenic RAS signaling in KRAS mutant cancers. Cell Res. 2023;33(1):30–45.

    Article  PubMed  CAS  Google Scholar 

  16. Nelson BR, Makarewich CA, Anderson DM, Winders BR, Troupes CD, Wu F, Reese AL, McAnally JR, Chen X, Kavalali ET, et al. A peptide encoded by a transcript annotated as long noncoding RNA enhances SERCA activity in muscle. Science (New York, NY). 2016;351(6270):271–5.

    Article  ADS  CAS  Google Scholar 

  17. Wu AH, Chen XL, Guo LY, Lu DF, Lu S, Wang AA, Liang XF. Downregulation of lncRNA IGF2-AS-encoded peptide induces trophoblast - cycle arrest. Reprod Biomed Online. 2021;43(4):598–606.

    Article  PubMed  CAS  Google Scholar 

  18. Zou Q, Du X, Zhou L, Yao D, Dong Y, Jin J. A short peptide encoded by long non-coding RNA small nucleolar RNA host gene 6 promotes cell migration and epithelial-mesenchymal transition by activating transforming growth factor-beta/SMAD signaling pathway in human endometrial cells. J Obstet Gynaecol Res. 2023;49(1):232–42.

    Article  PubMed  CAS  Google Scholar 

  19. Holdsworth-Carson SJ, Churchill M, Donoghue JF, Mortlock S, Fung JN, Sloggett C, Chung J, Cann L, Teh WT, Campbell KR, et al. Elucidating the role of long intergenic non-coding RNA 339 in human endometrium and endometriosis. Mol Hum Reprod. 2021;27(3):gaab010.

  20. Powell JE, Fung JN, Shakhbazov K, Sapkota Y, Cloonan N, Hemani G, Hillman KM, Kaufmann S, Luong HT, Bowdler L, et al. Endometriosis risk alleles at 1p36.12 act through inverse regulation of CDC42 and LINC00339. Hum Mol Genet. 2016;25(22):5046–58.

    PubMed  CAS  Google Scholar 

  21. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC bioinformatics. 2008;9:559.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nucera S, Giustacchini A, Boccalatte F, Calabria A, Fanciullo C, Plati T, Ranghetti A, Garcia-Manteiga J, Cittaro D, Benedicenti F, et al. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell. 2016;29(6):905–21.

    Article  PubMed  CAS  Google Scholar 

  23. Akbar R, Ullah K, Rahman TU, Cheng Y, Pang HY, Jin LY, Wang QJ, Huang HF, Sheng JZ. miR-183-5p regulates uterine receptivity and enhances embryo implantation. J Mol Endocrinol. 2020;64(1):43–52.

    Article  PubMed  CAS  Google Scholar 

  24. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rahnama F, Thompson B, Steiner M, Shafiei F, Lobie PE, Mitchell MD. Epigenetic regulation of E-cadherin controls endometrial receptivity. Endocrinology. 2009;150(3):1466–72.

    Article  PubMed  CAS  Google Scholar 

  26. Bellati F, Costanzi F, De Marco MP, Cippitelli C, Stoppacciaro A, De Angelis C, Ruscito I, Rago R, Caserta D. Low endometrial beta-catenin and cadherins expression patterns are predictive for primary infertility and recurrent pregnancy loss. Gynecol Endocrinol the official J Int Soc Gynecol Endocrinol. 2019;35(8):727–31.

    Article  CAS  Google Scholar 

  27. Li L, Jiang H, Wei X, Geng D, He M, Du H. Bu Shen Zhu Yun decoction improves endometrial receptivity via VEGFR-2-mediated angiogenesis. Evid -based Complement Alternative Med: eCAM. 2019;2019:3949824.

    Article  PubMed Central  Google Scholar 

  28. You F, Du X, Zhang T, Wang Y, Lv Y, Zeng L. TJZYF improves endometrial receptivity through regulating VEGF and PI3K/AKT signaling pathway. Biomed Res Int. 2022;2022:9212561.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tóthová Z, Šemeláková M, Solárová Z, Tomc J, Debeljak N, Solár P. The role of PI3K/AKT and MAPK signaling pathways in erythropoietin signalization. Int J Mol Sci. 2021;22(14):7682.

  30. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):1102.

  31. He M, Li L, Wei X, Geng D, Jiang H, Xiangxiang G, Zhang Y, Du H. Xiaoyao powder improves endometrial receptivity via VEGFR-2-mediated angiogenesis through the activation of the JNK and P38 signaling pathways. J Ethnopharmacol. 2022;282:114580.

    Article  PubMed  CAS  Google Scholar 

  32. Shen M, Liu Y, Ma X, Zhu Q: Erbu Zhuyu decoction improves endometrial angiogenesis via uterine natural killer cells and the PI3K/Akt/eNOS pathway a mouse model of embryo implantation dysfunction. American journal of reproductive immunology New York, NY : 2023 89(1):e13634.

  33. Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinform. 2019;20(5):1853–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Guo B, Wu S, Zhu X, Zhang L, Deng J, Li F, Wang Y, Zhang S, Wu R, Lu J, et al. Micropeptide CIP2A-BP encoded by LINC00665 inhibits triple-negative breast cancer progression. EMBO J. 2020;39(1):e102190.

    Article  PubMed  CAS  Google Scholar 

  35. Wang Y, Wu S, Zhu X, Zhang L, Deng J, Li F, Guo B, Zhang S, Wu R, Zhang Z, et al. LncRNA-encoded polypeptide ASRPS inhibits triple-negative breast cancer angiogenesis. J Exp Med. 2020;217(3):jem.20190950.

  36. Chung TW, Park MJ, Kim HS, Choi HJ, Ha KT. Integrin αVβ3 and αVβ5 are required for leukemia inhibitory factor-mediated the adhesion of trophoblast cells to the endometrial cells. Biochem Biophys Res Commun. 2016;469(4):936–40.

    Article  PubMed  CAS  Google Scholar 

  37. Laheri S, Ashary N, Bhatt P, Modi D. Oviductal glycoprotein 1 (OVGP1) is expressed by endometrial epithelium that regulates receptivity and trophoblast adhesion. J Assist Reprod Genet. 2018;35(8):1419–29.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sharma A, Mehan S. Targeting PI3K-AKT/mTOR signaling in the prevention of autism. Neurochem Int. 2021;147:105067.

    Article  PubMed  CAS  Google Scholar 

  39. Martínez-Limón A, Joaquin M, Caballero M, Posas F, de Nadal E. The p38 pathway: from biology to cancer therapy. Int J Mol Sci. 2020;21(6):1913.

  40. Stefani C, Miricescu D, Stanescu S II, Nica RI, Greabu M, Totan AR, Jinga M. Growth factors, PI3K/AKT/mTOR and MAPK signaling pathways in colorectal cancer pathogenesis: where are we now? Int J Mol Sci. 2021;22(19):10260.

  41. Huang H, Xia L, Xia Y, Yan Y, Jiang Z, Zhao P, Dong L. Tiaojing Cuyun Recipe enhances pregnancy outcome via the VEGF/PI3K/AKT/eNOS signaling pathway in EID mice. Dis Markers. 2022;2022:9461444.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yu SL, Kang Y, Jeong DU, Lee DC, Jeon HJ, Kim TH, Lee SK, Han AR, Kang J, Park SR. The miR-182-5p/NDRG1 axis controls endometrial receptivity through the NF-κB/ZEB1/E-cadherin pathway. Int J Mol Sci. 2022;23(20):12303.

  43. Bi Y, Huang W, Yuan L, Chen S, Liao S, Fu X, Liu B, Yang Y. HOXA10 improves endometrial receptivity by upregulating E-cadherin†. Biol Reprod. 2022;106(5):992–9.

    Article  PubMed  Google Scholar 

  44. Huang K, Chen G, Fan W, Hu L. miR-23a-3p increases endometrial receptivity via CUL3 during embryo implantation. J Mol Endocrinol. 2020;65(2):35–44.

    Article  PubMed  CAS  Google Scholar 

  45. Tiwari A, Ashary N, Singh N, Sharma S, Modi D. Modulation of E-cadherin and N-cadherin by ovarian steroids and embryonic stimuli. Tissue Cell. 2021;73:101670.

    Article  PubMed  CAS  Google Scholar 

  46. Jha RK, Titus S, Saxena D, Kumar PG, Laloraya M. Profiling of E-cadherin, beta-catenin and Ca(2+) in embryo-uterine interactions at implantation. FEBS Lett. 2006;580(24):5653–60.

    Article  PubMed  CAS  Google Scholar 

  47. Verma RK, Soni UK, Chadchan SB, Maurya VK, Soni M, Sarkar S, Pratap JV, Jha RK. miR-149-PARP-2 signaling regulates E-cadherin and N-cadherin expression in the murine model of endometrium receptivity. Reprod Sci (Thousand Oaks, Calif). 2022;29(3):975–92.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Henan Province Crucial Research and Development and Promotion Projects (Tackling of Key Scientific and Technical Problems; Project number: 212102310048), the Henan Province Medical Science and Technology Research Program (Joint Co-construction; Project No.: LHGJ20210364), and the Doctoral Scientific Research Foundation of the Second Affiliated Hospital of Zhengzhou University (Project No.: 202104069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1 LINC00339 can encode a 49-aa peptide.

2. LINC00339-205-49aa promotes JAR cells’ adhesion to Ishikawa cells.

3. MAPK and PI3K-Akt pathways are involved in the regulation of LINC00339-205-49aa.

Supplementary information

ESM 1

(XLSX 350 kb)

ESM 2

(XLSX 9 kb)

ESM 3

(XLSX 1210 kb)

ESM 4

(XLSX 9 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Yu, G., Zhao, M. et al. The lncRNA LINC00339-encoded peptide promotes trophoblast adhesion to endometrial cells via MAPK and PI3K-Akt signaling pathways. J Assist Reprod Genet 41, 493–504 (2024). https://doi.org/10.1007/s10815-023-02995-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02995-6

Keywords

Navigation