Skip to main content

Advertisement

Log in

Prediction of major microRNAs in follicular fluid regulating porcine oocyte development

  • Reproductive Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

The aim of the present study was to identify key microRNAs (miRNAs) in porcine follicular fluid (FF) that regulate oocyte growth.

Methods

miRNAs contained in FF were determined by small RNA-seq of exosome RNA. Upstream regulator miRNA was determined by ingenuity pathway analysis using differentially expressed genes in granulosa cells (GCs) between small follicles (1–2 mm in diameter) and large follicles (3–5 mm), and between follicles containing oocytes of high developmental ability and follicles containing oocytes of low developmental ability. The candidate miRNAs overlapping among the three miRNAs group were determined. Lastly, the effect of supplementation with FF, exosome-depleted FFs, or each miRNA on in vitro oocyte growth was examined.

Results

The miRNAs determined were miR-17, -27, -92a, and -145. These miRNAs were found in the spent culture medium of oocytes and granulosa cells complexes and serum by small RNA sequencing. Culturing of oocytes and granulosa cells complexes collected from porcine early antral follicles (0.5–0.7 mm in diameter) with FF for 14 days improved oocyte growth; depletion of exosomes from the FFs neutralized the beneficial effect observed. miR-92a mimic increased the antrum formation and diameter, together with acetylated levels of H4K12 in oocytes. In addition, supplementation of miRNA mimics miR-17b, -92a, and -145b improved the rate of chromatin configuration, and miR-17b and -92a mimics improved the developmental ability of oocytes to the blastocyst stage.

Conclusion

miR-17, -92a, and -145 are major miRNA candidates in follicular fluids regulating oocyte growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data sets about RNA-seq and small RNA-seq data are registered in DDJB as described in text.

References

  1. Munakata Y, Kawahara-Miki R, Shiratsuki S, Tasaki H, Itami N, Shirasuna K, et al. Gene expression patterns in granulosa cells and oocytes at various stages of follicle development as well as in in vitro grown oocyte-and-granulosa cell complexes. J Reprod Dev. 2016;62:359–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Eppig JJ. Oocyte control of ovarian follicular development and function in mammals. Reproduction. 2001;122:829–38.

    Article  PubMed  CAS  Google Scholar 

  3. Matzuk MM, Burns KH, Viveiros MM, Eppig JJ. Intercellular communication in the mammalian ovary: oocytes carry the conversation. Science. 2002;296:2170–80.

    Article  Google Scholar 

  4. Rodgers RJ, Irving-Rodgers HF. Formation of the ovarian follicular antrum and follicular fluid. Biol Reprod. 2010;82:1021–9.

    Article  PubMed  CAS  Google Scholar 

  5. Mao J, Whitworth KM, Spate LD, Walters EM, Zhao J, Prather RS. Regulation of oocyte mitochondrial DNA copy number by follicular fluid, EGF, and neuregulin 1 during in vitro maturation affects embryo development in pigs. Theriogenology. 2012;78:887–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Shibahara H, Ishiguro A, Shirasuna K, Kuwayama T, Iwata H. Follicular factors determining the developmental competence of porcine oocyte. Reprod Med Biol. 2019; In press.

  7. Di Pietro C. Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet. 2016;33:303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  8. da Silveira JC, Veeramachaneni DN, Winger QA, Carnevale EM, Bouma GJ. Cell-secreted vesicles in equine ovarian follicular fluid contain miRNAs and proteins: a possible new form of cell communication within the ovarian follicle. Biol Reprod. 2012;86:71.

    Article  PubMed  CAS  Google Scholar 

  9. da Silveira JC, de Ávila ACFCM, Garrett HL, Bruemmer JE, Winger QA, Bouma GJ. Cell-secreted vesicles containing microRNAs as regulators of gamete maturation. J Endocrinol. 2018;236:R15–27.

    Article  PubMed  Google Scholar 

  10. Hung WT, Hong X, Christenson LK, McGinnis LK. Extracellular vesicles from bovine follicular fluid support cumulus expansion. Biol Reprod. 2015;93:117.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Navakanitworakul R, Hung W-T, Gunewardena S, Davis JS, Chotigeat W, Christenson LK. Characterization and small RNA content of extracellular vesicles in follicular fluid of developing bovine antral follicles. Sci Rep. 2016;6:25486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pasquariello R, Manzoni EFM, Fiandanese N, Viglino A, Pocar P, Brevini TAL, et al. Implications of miRNA expression pattern in bovine oocytes and follicular fluids for developmental competence. Theriogenology. 2020;145:77–85.

    Article  PubMed  CAS  Google Scholar 

  13. Sohel MM, Hoelker M, Noferesti SS, Salilew-Wondim D, Tholen E, Looft C, et al. Exosomal and Non-exosomal transport of extra-cellular microRNAs in follicular fluid: implications for bovine oocyte developmental competence. PLoS One. 2013;8(11):e78505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Diez-Fraile A, Lammens T, Tilleman K, Witkowski W, Verhasselt B, De Sutter P, et al. Age-associated differential microRNA levels in human follicular fluid reveal pathways potentially determining fertility and success of in vitro fertilization. Hum Fertill (Camb). 2014;17:90–8.

    Article  CAS  Google Scholar 

  15. Liu J, Yao W, Yao Y, Du X, Zhou J, Ma B, et al. MiR-92a inhibits porcine ovarian granulosa cell apoptosis by targeting Smad7 gene. FEBS Lett. 2014;588:4497–503.

    Article  PubMed  CAS  Google Scholar 

  16. Roth LW, McCallie B, Alvero R, Schoolcraft WB, Minjarez D, Katz-Jaffe MG. Altered microRNA and gene expression in the follicular fluid of women with polycystic ovary syndrome. J Assist Reprod Genet. 2014;31:355–62.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Peng JY, An XP, Fang F, Gao KX, Xin HY, Han P, et al. MicroRNA-10b suppresses goat granulosa cell proliferation by targeting brain-derived neurotropic factor. Domest Anim Endocrinol. 2016;54:60–7.

    Article  PubMed  CAS  Google Scholar 

  18. Machtinger R, Rodosthenous RS, Adir M, Mansour A, Racowsky C, Baccarelli AA, et al. Extracellular microRNAs in follicular fluid and their potential association with oocyte fertilization and embryo quality: an exploratory study. J Assist Reprod Genet. 2017;34:525–33.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yoshioka K, Suzuki C, Tanaka A, Anas IM, Iwamura S. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol Reprod. 2002;66:112–9.

    Article  PubMed  CAS  Google Scholar 

  20. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.J. 2011;17:10–2.

    Article  Google Scholar 

  21. Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N. miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res. 2012;40:37–52.

    Article  PubMed  CAS  Google Scholar 

  22. Munakata Y, Ueda M, Kawahara-Miki R, Kansaku K, Itami N, Shirasuna K, et al. Follicular factors determining granulosa cell number and developmental competence of porcine oocytes. J Assist Reprod Genet. 2018;35:1809–19.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Munakata Y, Kawahara-Miki R, Shirasuna K, Kuwayama T, Iwata H. Polyacrylamide gel as a culture substrate improves in vitro oocyte growth from porcine early antral follicles. Mol Reprod Dev. 2017;84:44–54.

    Article  PubMed  CAS  Google Scholar 

  24. Sun MJ, Zhu S, Li YW, Lin J, Gong S, Jiao GZ, et al. An essential role for the intra-oocyte MAPK activity in the NSN-to-SN transition of germinal vesicle chromatin configuration in porcine oocytes. Sci Rep. 2016;6:23555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. De La Fuente R. Chromatin modifications in the germinal vesicle (GV) of mammalian oocytes. Dev Biol. 2006;292:1–12.

    Article  CAS  Google Scholar 

  26. Bijttebier J, Van Soom A, Meyer E, Mateusen B, Maes D. Preovulatory follicular fluid during in vitro maturation decreases polyspermic fertilization of cumulus-intact porcine oocytes in vitro maturation of porcine oocytes. Theriogenology. 2008;70:715–24.

    Article  PubMed  CAS  Google Scholar 

  27. Somfai T, Inaba Y, Watanabe S, Geshi M, Nagai T. Follicular fluid supplementation during in vitro maturation promotes sperm penetration in bovine oocytes by enhancing cumulus expansion and increasing mitochondrial activity in oocytes. Reprod Fertil Dev. 2012;24:743–52.

    Article  PubMed  Google Scholar 

  28. Lopes JS, Canha-Gouveia A, París-Oller E, Coy P. Supplementation of bovine follicular fluid during in vitro maturation increases oocyte cumulus expansion, blastocyst developmental kinetics, and blastocyst cell number. Theriogenology. 2019;126:222–9.

    Article  PubMed  Google Scholar 

  29. Machtinger R, Laurent LC, Baccarelli AA. Extracellular vesicles: roles in gamete maturation, fertilization and embryo implantation. Hum Reprod Update. 2016;22:182–93.

    PubMed  CAS  Google Scholar 

  30. Naji M, Nekoonam S, Aleyasin A, Arefian E, Mahdian R, Azizi E, et al. Expression of miR-15a, miR-145, and miR-182 in granulosa-lutein cells, follicular fluid, and serum of women with polycystic ovary syndrome (PCOS). 2018;297:221–31.

  31. Salilew-Wondim D, Ahmad I, Gebremedhn S, Sahadevan S, Hossain MD, Rings F, et al. The expression pattern of microRNAs in granulosa cells of subordinate and dominant follicles during the early luteal phase of the bovine estrous cycle. PLoS One. 2014;9:e106795.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Yan G, Zhang L, Fang T, Zhang Q, Wu S, Jiang Y, et al. MicroRNA-145 suppresses mouse granulosa cell proliferation by targeting activin receptor IB. FEBS Lett. 2012;586:3263–70.

    Article  PubMed  CAS  Google Scholar 

  33. Andreas E, Hoelker M, Neuhoff C, Tholen E, Schellander K, Tesfaye D, et al. MicroRNA 17-92 cluster regulates proliferation and differentiation of bovine granulosa cells by targeting PTEN and BMPR2 genes. Cell Tissue Res. 2016;366:219–30.

    Article  PubMed  CAS  Google Scholar 

  34. Cuomo D, Porreca I, Ceccarelli M, Threadgill DW, Barrington WT, Petriella A, et al. Transcriptional landscape of mouse-aged ovaries reveals a unique set of non-coding RNAs associated with physiological and environmental ovarian dysfunctions. Cell Death Dis. 2018;4:112.

    Article  CAS  Google Scholar 

  35. Sun XS, Liu Y, Yue KZ, Ma SF, Tan JH. Changes in germinal vesicle (GV) chromatin configurations during growth and maturation of porcine oocytes. Mol Reprod Dev. 2004;69:228–34.

    Article  PubMed  CAS  Google Scholar 

  36. Kageyama S, Liu H, Kaneko N, Ooga M, Nagata M, Aoki F. Alterations in epigenetic modifications during oocyte growth in mice. Reproduction. 2007;133:85–94.

    Article  PubMed  CAS  Google Scholar 

  37. Munakata Y, Ichinose T, Ogawa K, Itami N, Tasaki H, Shirasuna K, et al. Relationship between the number of cells surrounding oocytes and energy states of oocytes. Theriogenology. 2016b;86:1789–98.

    Article  PubMed  Google Scholar 

  38. Sugiyama M, Sumiya M, Shirasuna K, Kuwayama T, Iwata H. Addition of granulosa cell mass to the culture medium of oocytes derived from early antral follicles increases oocyte growth, ATP content, and acetylation of H4K12. Zygote. 2016;24:848–56.

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Xu B, Tian GG, Sun T, Wu J. Ablation of the MiR-17-92 microrna cluster in germ cells causes subfertility in female mice. Cell Physiol Biochem. 2018;45:491–504.

    Article  PubMed  CAS  Google Scholar 

  40. Martinez RM, Liang L, Racowsky C, Dioni L, Mansur A, Adir M, et al. Extracellular microRNAs profile in human follicular fluid and IVF outcomes. Sci Rep. 2018;8:17036.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Zhang S, Wang L, Wang L, Chen Y, Li F. miR-17-5p affects porcine granulosa cell growth and oestradiol synthesis by targeting E2F1 gene. Reprod Domest Anim. 2019:1459–69.

  42. Nie M, Yu S, Peng S, Fang Y, Wang H, Yang X. miR-23a and miR-27a promote human granulosa cell apoptosis by targeting SMAD5. Biol Reprod. 2015;93(4):98.

    Article  PubMed  CAS  Google Scholar 

  43. Xu L, Sun H, Zhang M, Jiang Y, Zhang C, Zhou J, et al. MicroRNA-145 protects follicular granulosa cells against oxidative stress-induced apoptosis by targeting Krüppel-like factor 4. Mol Cell Endocrinol. 2017;452:138–47.

    Article  PubMed  CAS  Google Scholar 

  44. Cui L, Fang L, Mao X, Chang HM, Leung PCK, Ye Y. GDNF-Induced downregulation of miR-145-5p enhances human oocyte maturation and cumulus cell viability. J Clin Endocrinol Metab. 2018;103(7):2510–21.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Rumi Ohtake and Naoko Kosuge (Tokyo University of Agriculture) for technical support.

Funding

This study was supported by the Science Research Promotion Fund of the Promotion and Mutual Aid Corporation for Private Schools of Japan.

Author information

Authors and Affiliations

Authors

Contributions

I.Y, and M.Y conducted culture experiment; S.A, M.R, and M.Y conducted RNA-seq and small RNA-seq; H.I designed this experiment; H.I, K.S, M.Y, and I.Y wrote this paper.

Corresponding author

Correspondence to Hisataka Iwata.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

Based on the policy of the animal ethics committee of Tokyo University of Agriculture, the use of oocytes collected from porcine ovaries was approved, because all ovary samples were collected from a slaughterhouse where ovaries were discarded due to a lack of edible use.

Consent to participate and for publications

All authors have approved the manuscript and agree to its resubmission.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary materials

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inoue, Y., Munakata, Y., Shinozawa, A. et al. Prediction of major microRNAs in follicular fluid regulating porcine oocyte development. J Assist Reprod Genet 37, 2569–2579 (2020). https://doi.org/10.1007/s10815-020-01909-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-020-01909-0

Keywords

Navigation