Skip to main content

Advertisement

Log in

Amyloid-like substance in mice and human oocytes and embryos

  • Gamete Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos.

Methods

An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18–45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy.

Results

Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml.

Conclusion

We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Pastore LM, Christianson MS, Stelling J, Kearns WG, Segars JH. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J Assist Reprod Genet. 2018;35(1):17–23.

  2. Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles. Hum Mol Genet. 2010;19:397–410.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood. Hum Reprod Update. 2015;21(6):779–86.

    Article  CAS  PubMed  Google Scholar 

  4. Sun X, Su Y, He Y, Zhang J, Liu W, Zhang H, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators. Cell Cycle. 2015;14(5):721–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Optimizing natural fertility. Fertil Steril. 2008;90(5 Suppl):S1–6.

  6. Hornstein MD. State of the ART: assisted reproductive Technologies in the United States. Reprod Sci. 2016;23(12):1630–3.

    Article  PubMed  Google Scholar 

  7. Takahashi T, Igarashi H, Amita M, Hara S, Matsuo K, Kurachi H. Molecular mechanism of poor embryo development in postovulatory aged oocytes: mini review. J Obstet Gynaecol Res. 2013;39(10):1431–9.

    CAS  PubMed  Google Scholar 

  8. Broekmans FJ, Kwee J, Hendriks DJ, Mol BW, Lambalk CB. A systematic review of tests predicting ovarian reserve and IVF outcome. Hum Reprod Update. 2006;12(6):685–718.

    Article  CAS  PubMed  Google Scholar 

  9. Hassold T, Hunt P. To err (meiotically) is human: the genesis of human aneuploidy. Nat Rev Genet. 2001;2(4):280–91.

    Article  CAS  PubMed  Google Scholar 

  10. Battaglia DE, Goodwin P, Klein NA, Soules MR. Influence of maternal age on meiotic spindle assembly in oocytes from naturally cycling women. Hum Reprod. 1996;11(10):2217–22.

    Article  CAS  PubMed  Google Scholar 

  11. Keefe DL, Niven-Fairchild T, Powell S, Buradagunta S. Mitochondrial deoxyribonucleic acid deletions in oocytes and reproductive aging in women. Fertil Steril. 1995;64(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  12. Polani PE, Crolla JA. A test of the production line hypothesis of mammalian oogenesis. Hum Genet. 1991;88(1):64–70.

    Article  CAS  PubMed  Google Scholar 

  13. Liu L, Keefe DL. Nuclear origin of aging-associated meiotic defects in senescence-accelerated mice. Biol Reprod. 2004;71(5):1724–9.

    Article  CAS  PubMed  Google Scholar 

  14. Scheffer JB, Scheffer BB, de Carvalho RF, Rodrigues J, Grynberg M, Mendez Lozano DH. Age as apredictor of embryo quality regardless of the quantitative ovarian response. Int J Fertil Steril. 2017;11(1):40–6.

    CAS  PubMed  Google Scholar 

  15. Shewmaker F, McGlinchey RP, Wickner RB. Structural insights into functional and pathological amyloid. J Biol Chem. 2011;286(19):16533–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Riek R, Eisenberg DS. The activities of amyloids from a structural perspective. Nature. 2016;539(7628):227–35.

    Article  PubMed  Google Scholar 

  17. Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, et al. The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 2012;150(2):339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci U S A. 1993;90(17):7951–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Thomas T, Thomas G, McLendon C, Sutton T, Mullan M. Beta-amyloid-mediated vasoactivity and vascular endothelial damage. Nature. 1996;380(6570):168–71.

    Article  CAS  PubMed  Google Scholar 

  20. Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000;21(3):383–421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pinzer BR, Cacquevel M, Modregger P, McDonald SA, Bensadoun JC, Thuering T, et al. Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage. 2012;61(4):1336–46.

    Article  CAS  PubMed  Google Scholar 

  22. Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15(6):384–96.

    Article  CAS  PubMed  Google Scholar 

  23. Fowler DM, Koulov AV, Balch WE, Kelly JW. Functional amyloid--from bacteria to humans. Trends Biochem Sci. 2007;32(5):217–24.

    Article  CAS  PubMed  Google Scholar 

  24. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, et al. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science. 2002;295(5556):851–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwan AH, Winefield RD, Sunde M, et al. Structural basis for rodlet assembly in fungal hydrophobins. Proc Natl Acad Sci U S A. 2006;103(10):3621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol. 2006;4(1):e6.

    Article  CAS  PubMed  Google Scholar 

  27. Maji SK, Perrin MH, Sawaya MR, Jessberger S, Vadodaria K, Rissman RA, et al. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science. 2009;325(5938):328–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Whelly S, Johnson S, Powell J, Borchardt C, Hastert MC, Cornwall GA. Nonpathological extracellular amyloid is present during normal epididymal sperm maturation. PLoS One. 2012;7(5):e36394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guyonnet B, Egge N, Cornwall GA. Functional amyloids in the mouse sperm acrosome. Mol Cell Biol. 2014;34(14):2624–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Parodi J, Ochoa-de la Paz L, Miledi R, Martinez-Torres A. Functional and structural effects of amyloid-beta aggregate on Xenopus laevis oocytes. Mol Cell. 2012;34(4):349–55.

    Article  CAS  Google Scholar 

  31. Egge N, Muthusubramanian A, Cornwall GA. Amyloid properties of the mouse egg zona pellucida. PLoS One. 2015;10(6):e0129907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Berchowitz LE, Kabachinski G, Walker MR, Carlile TM, Gilbert WV, Schwartz TU, et al. Regulated formation of an amyloid-like translational repressor governs gametogenesis. Cell. 2015;163(2):406–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chandra A, Copen CE, Stephen EH. Infertility and impaired fecundity in the United States, 1982–2010: data from the National Survey of Family Growth. Natl Health Stat Rep. 2013;(67):1–18 1 p following 19.

  34. Al-Hilaly YK, et al. A central role for dityrosine crosslinking of amyloid-beta in Alzheimer's disease. Acta Neuropathol Commun. 2013;1:83.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yurttas P, Morency E, Coonrod SA. Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction. 2010;139(5):809–23.

    Article  CAS  PubMed  Google Scholar 

  36. Nothias JY, Miranda M, DePamphilis ML. Uncoupling of transcription and translation during zygotic gene activation in the mouse. EMBO J. 1996;15(20):5715–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schultz RM. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update. 2002;8(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  38. Yu J, Hecht NB, Schultz RM. Expression of MSY2 in mouse oocytes and preimplantation embryos. Biol Reprod. 2001;65(4):1260–70.

    Article  CAS  PubMed  Google Scholar 

  39. Latham KE, Garrels JI, Chang C, Solter D. Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development. 1991;112(4):921–32.

    CAS  PubMed  Google Scholar 

  40. Aoki F, Worrad DM, Schultz RM. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol. 1997;181(2):296–307.

    Article  CAS  PubMed  Google Scholar 

  41. Schultz RM. Regulation of zygotic gene activation in the mouse. Bioessays. 1993;15(8):531–8.

    Article  CAS  PubMed  Google Scholar 

  42. Mann MR, Bartolomei MS. Epigenetic reprogramming in the mammalian embryo: struggle of the clones. Genome Biol. 2002;3(2):Reviews1003.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ma J, Svoboda P, Schultz RM, Stein P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol Reprod. 2001;64(6):1713–21.

    Article  CAS  PubMed  Google Scholar 

  44. Bui HT, Wakayama S, Mizutani E, Park KK, Kim JH, van Thuan N, et al. Essential role of paternal chromatin in the regulation of transcriptional activity during mouse preimplantation development. Reproduction. 2011;141(1):67–77.

    Article  CAS  PubMed  Google Scholar 

  45. Sutovsky P, Schatten G. Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int Rev Cytol. 2000;195:1–65.

    CAS  PubMed  Google Scholar 

  46. Tang F, Kaneda M, O'Carroll D, Hajkova P, Barton SC, Sun YA, et al. Maternal microRNAs are essential for mouse zygotic development. Genes Dev. 2007;21(6):644–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li L, Zheng P, Dean J. Maternal control of early mouse development. Development. 2010;137(6):859–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N. Autophagy is essential for preimplantation development of mouse embryos. Science. 2008;321(5885):117–20.

    Article  CAS  PubMed  Google Scholar 

  49. Ferreira EM, Vireque AA, Adona PR, Ferriani RA, Navarro PA. Prematuration of bovine oocytes with butyrolactone I reversibly arrests meiosis without increasing meiotic abnormalities after in vitro maturation. Eur J Obstet Gynecol Reprod Biol. 2009;145(1):76–80.

    Article  CAS  PubMed  Google Scholar 

  50. Coticchio G, Dal Canto M, Mignini Renzini M, Guglielmo MC, Brambillasca F, Turchi D, et al. Oocyte maturation: gamete-somatic cells interactions, meiotic resumption, cytoskeletal dynamics and cytoplasmic reorganization. Hum Reprod Update. 2015;21(4):427–54.

    Article  CAS  PubMed  Google Scholar 

  51. Jin F, Hamada M, Malureanu L, Jeganathan KB, Zhou W, Morbeck DE, et al. Cdc20 is critical for meiosis I and fertility of female mice. PLoS Genet. 2010;6(9):e1001147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Park DS, Levine B, Ferrari G, Greene LA. Cyclin dependent kinase inhibitors and dominant negative cyclin dependent kinase 4 and 6 promote survival of NGF-deprived sympathetic neurons. J Neurosci. 1997;17(23):8975–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Copani A, Copani A, Angela Sortino M, Nicoletti F, Bruno V, Nicoletti F, et al. Activation of cell-cycle-associated proteins in neuronal death: a mandatory or dispensable path? Trends Neurosci. 2001;24(1):25–31.

    Article  CAS  PubMed  Google Scholar 

  54. Xu X, Lei Y, Luo J, Wang J, Zhang S, Yang XJ, et al. Prevention of beta-amyloid induced toxicity in human iPS cell-derived neurons by inhibition of cyclin-dependent kinases and associated cell cycle events. Stem Cell Res. 2013;10(2):213–27.

    Article  CAS  PubMed  Google Scholar 

  55. Duan FH, Chen SL, Chen X, Niu J, Li P, Liu YD, et al. Follicular fluid Abeta40 concentrations may be associated with ongoing pregnancy following in vitro fertilization. J Assist Reprod Genet. 2014;31(12):1611–20.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Urieli-Shoval S, Finci-Yeheskel Z, Eldar I, Linke RP, Levin M, Prus D, et al. Serum amyloid a: expression throughout human ovarian folliculogenesis and levels in follicular fluid of women undergoing controlled ovarian stimulation. J Clin Endocrinol Metab. 2013;98(12):4970–8.

    Article  CAS  PubMed  Google Scholar 

  57. Boke E, Ruer M, Wühr M, Coughlin M, Lemaitre R, Gygi SP, et al. Amyloid-like self-assembly of a cellular compartment. Cell. 2016;166(3):637–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boke E, Mitchison TJ. The balbiani body and the concept of physiological amyloids. Cell Cycle. 2017;16(2):153–4.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank NYULMC DART Microscopy Lab for their assistance: Alice Liang, Chris Petzold and K isten Dancel-Manning with TEM work, and Michael Cammer for LM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lawrence. Keefe.

Ethics declarations

Financial disclosure

Support from FAPESP, Brazil (Process 2015/21907-0) (PN) and the Stanley H. Kaplan Endowment Fund.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pimentel, R.N., Navarro, P.A., Wang, F. et al. Amyloid-like substance in mice and human oocytes and embryos. J Assist Reprod Genet 36, 1877–1890 (2019). https://doi.org/10.1007/s10815-019-01530-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01530-w

Keywords

Navigation