Skip to main content

Advertisement

Log in

The role of FAS, FAS-L, BAX, and BCL-2 gene polymorphisms in determining susceptibility to unexplained recurrent pregnancy loss

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Idiopathic recurrent pregnancy loss (RPL) is a multifactorial reproductive disorder where an impaired control of apoptosis is likely involved. Triggering the cell death mechanism occurs in a spatiotemporal manner and is strongly related to a healthy pregnancy. Single nucleotide polymorphisms (SNPs) at the regulatory regions of genes are known to influence the expression patterns of apoptosis-related molecules.

Methods

A total of 296 unrelated female Brazilian patients were evaluated for clinical-demographic variables and genetic factors: 140 women who had experienced an unexplained RPL (with at least two consecutive abortions) and 156 healthy multiparous women. In all patients, six SNPs were evaluated in genes of apoptosis-related pathways: FAS (rs2234767, rs1800682), FAS-L (rs763110, rs5030772), BAX (rs4645878), and BCL-2 (rs2279115) by PCR followed by a restriction fragment length polymorphism (RFLP)-based analysis.

Results

The BAX-248GA genotype is independently associated with idiopathic RPL [adjusted OR = 0.30, 95% CI 0.13–0.70, P = 0.005] susceptibility. In the same multivariate model, the variables ethnicity, smoking, and alcohol consumption were statistically associated with RPL susceptibility (P < 0.05). No association with RPL susceptibility was reported for the remaining SNPs.

Conclusion

Our study is the first to evaluate the role of the main SNPs from both the extrinsic and intrinsic apoptosis pathways in RPL susceptibility. The association of BAX-248G/A with RPL susceptibility suggests that maternal predisposition for RPL has an essential contribution from genes involved in the delicate balance of endometrium cell turnover (cell death/proliferation). Therefore, apoptotic genes may represent promising targets for future studies on healthy pregnancies and the spectrum of pregnancy disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Practice Committee of the American Society for Reproductive Medicine. Evaluation and treatment of recurrent pregnancy loss: a committee opinion. Fertil Steril. 2012;98:1103–11.

    Article  Google Scholar 

  2. Rai R, Regan L. Recurrent miscarriage. Lancet. 2006;368:601–11.

    Article  PubMed  Google Scholar 

  3. Christiansen OB. Research methodology in recurrent pregnancy loss. Obstet Gynecol Clin N Am. 2014;41:19–39.

    Article  Google Scholar 

  4. Toth B, Jeschke U, Rogenhofer N, Scholz C, Würfel W, Thaler CJ, et al. Recurrent miscarriage: current concepts in diagnosis and treatment. J Reprod Immunol. 2010;85:25–32.

    Article  CAS  PubMed  Google Scholar 

  5. Shahine L, Lathi R. Recurrent pregnancy loss. Obstet Gynecol Clin N Am. 2015;42:117–34.

    Article  Google Scholar 

  6. Aghaeepour N, Ganio EA, Mcilwain D, Tsai AS, Tingle M, Van Gassen S, et al. An immune clock of human pregnancy. Sci Immunol. 2017;1:2.

    Google Scholar 

  7. Diemert A, Arck PC. Pregnancy around the clock. Trends Mol Med. 2018;24:1–3.

    Article  PubMed  Google Scholar 

  8. Choi H-K, Choi BC, Lee S-H, Kim JW, Cha KY, Baek K-H. Expression of angiogenesis- and apoptosis-related genes in chorionic villi derived from recurrent pregnancy loss patients. Mol Reprod Dev. 2003;66:24–31.

    Article  CAS  PubMed  Google Scholar 

  9. Baek K-H. Aberrant gene expression associated with recurrent pregnancy loss. Mol Hum Reprod. 2004;10:291–7.

    Article  CAS  PubMed  Google Scholar 

  10. Sõber S, Rull K, Reiman M, Ilisson P, Mattila P, Laan M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci Rep. 2016;6:38439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee J, Oh J, Choi E, Park I, Han C, Kim DH, et al. Differentially expressed genes implicated in unexplained recurrent spontaneous abortion. Int J Biochem Cell Biol. 2007;39:2265–77.

    Article  CAS  PubMed  Google Scholar 

  12. Krieg SA, Fan X, Hong Y, Sang Q-X, Giaccia A, Westphal LM, et al. Global alteration in gene expression profiles of deciduas from women with idiopathic recurrent pregnancy loss. Mol Hum Reprod. 2012;18:442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wei D, Wu Q, Shi H. Apoptosis and p53 expression in the placental villi of females with unexplained recurrent spontaneous abortion. Exp Ther Med. 2014;7:191–4.

    Article  CAS  PubMed  Google Scholar 

  14. Oreshkova T, Dimitrov R, Mourdjeva M. A cross-talk of decidual stromal cells, trophoblast, and immune cells: a prerequisite for the success of pregnancy. Am J Reprod Immunol. 2012;68:366–73.

    Article  CAS  PubMed  Google Scholar 

  15. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018;25:486–541.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, et al. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015;22:549–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Murakoshi H, Matsuo H, Laoag-Fernandez JB, Samoto T, Maruo T. Expression of Fas/Fas-ligand, Bcl-2 protein and apoptosis in extravillous trophoblast along invasion to the decidua in human term placenta. Endocr J. 2003;50:199–207.

    Article  CAS  PubMed  Google Scholar 

  18. Niederkorn JY. See no evil, hear no evil, do no evil: the lessons of immune privilege. Nat Immunol. 2006;7:354–9.

    Article  CAS  PubMed  Google Scholar 

  19. Robinson R, Hsu CD, Chesebro AL, Nguyen J, Ali N, Maramreddy H, et al. A single-nucleotide polymorphism (-670) of the maternal Fas gene is associated with intrauterine growth restriction. Am J Obstet Gynecol. 2009;201:620.e1–4.

    Article  CAS  Google Scholar 

  20. Ciarmela P, Boschi S, Bloise E, Marozio L, Benedetto C, Castellucci M, et al. Polymorphisms of FAS and FAS ligand genes in preeclamptic women. Eur J Obstet Gynecol Reprod Biol. 2010;148:144–6.

    Article  CAS  PubMed  Google Scholar 

  21. Nair RR, Khanna A, Singh K. Association of FAS-1377 G>A and FAS-670 A>G functional polymorphisms of FAS gene of cell death pathway with recurrent early pregnancy loss risk. J Reprod Immunol. 2012;93:114–8.

    Article  CAS  PubMed  Google Scholar 

  22. Banzato PCA, Daher S, Traina É, Torloni MR, Gueuvoghlanian-Silva BY, Puccini RF, et al. FAS and FAS-L genotype and expression in patients with recurrent pregnancy loss. Reprod Sci. 2013;20:1111–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nasr AS, Abdel Aal AA, Soliman A, Setohy KAAEL, Shehata MF. FAS and FAS ligand gene polymorphisms in Egyptian females with preeclampsia. J Reprod Immunol. 2014;104–105:63–7.

    Article  CAS  PubMed  Google Scholar 

  24. Glesse N, Vianna P, Paim LMG, Matte MCC, Aguiar AKK, Palhano PL, et al. Evaluation of polymorphic variants in apoptotic genes and their role in susceptibility and clinical progression to systemic lupus erythematosus. Lupus. 2017;26:746–55.

    Article  CAS  PubMed  Google Scholar 

  25. Raguema N, Zitouni H, Ben Ali Gannoun M, Benletaifa D, Almawi W, Mahjoub T, et al. FAS A-670G and Fas ligand IVS2nt A 124G polymorphisms are significantly increased in women with pre-eclampsia and may contribute to HELLP syndrome: a case-controlled study. BJOG. 2018;125:1758–64.

    Article  CAS  PubMed  Google Scholar 

  26. Masoumi E, Tavakkol-Afshari J, Nikpoor AR, Ghaffari-Nazari H, Tahaghoghi-hajghorbani S, Jalali SA. Relationship between Fas and Fas ligand gene polymorphisms and pre-eclampsia. J Obstet Gynaecol Res. 2016;42:1272–8.

    Article  CAS  PubMed  Google Scholar 

  27. Han AR, Choi YM, Hong MA, Kim JJ, Lee SK, Yang KM, et al. Fas and FasL genetic polymorphisms in women with recurrent pregnancy loss: a case-control study. Hum Fertil. 2018:1–6.

  28. Huang QR, Morris D, Manolios N. Identification and characterisation of polymorphisms in the promoter region of the human Apo-1/Fas (CD95) gene. Mol Immunol. 1997;34:577–82.

    Article  CAS  PubMed  Google Scholar 

  29. Sibley K, Rollinson S, Allan JM, Smith AG, Law GR, Roddam PL, et al. Functional FAS promoter polymorphisms are associated with increased risk of acute myeloid leukemia. Cancer Res. 2003;63:4327–30.

    CAS  PubMed  Google Scholar 

  30. Wu J, Metz C, Xu X, Abe R, Gibson AW, Edberg JC, et al. A novel polymorphic CAAT/enhancer-binding protein beta element in the FasL gene promoter alters Fas ligand expression: a candidate background gene in African American systemic lupus erythematosus patients. J Immunol. 2003;170:132–8.

    Article  CAS  PubMed  Google Scholar 

  31. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circ Res. 2012;111:1198–207.

    Article  CAS  PubMed  Google Scholar 

  32. Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, et al. Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell. 2005;121:579–91.

    Article  CAS  PubMed  Google Scholar 

  33. Marie Hardwick J, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5:a008722.

    PubMed  Google Scholar 

  34. Nückel H, Frey UH, Bau M, Sellmann L, Stanelle J, Dürig J, et al. Association of a novel regulatory polymorphism (-938C>A) in the BCL2 gene promoter with disease progression and survival in chronic lymphocytic leukemia. Blood. 2007;109:290–7.

    Article  CAS  PubMed  Google Scholar 

  35. Sahu SK, Choudhuri T. Lack of association between Bax promoter (-248G>A) single nucleotide polymorphism and susceptibility towards cancer: evidence from a meta-analysis. PLoS One. 2013;8(10):e77534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Feng Y, Chen X, Zheng Y, Liu Q, Chen H, Cai Y, et al. Prognostic value and susceptibility of BAX rs4645878 polymorphism in cancer. Medicine (Baltimore). 2018;97:e11591.

    Article  CAS  Google Scholar 

  37. Skogsberg Å, Tobin G, Kröber A, Kienle D, Thunberg U, Åleskog A, et al. The G(-248)A polymorphism in the promoter region of the Bax gene does not correlate with prognostic markers or overall survival in chronic lymphocytic leukemia. Leukemia. 2006;20:77–81.

    Article  CAS  PubMed  Google Scholar 

  38. Moshynska O, Sankaran K, Saxena A. Molecular detection of the G(-248)A BAX promoter nucleotide change in B cell chronic lymphocytic leukaemia. Mol Pathol. 2003;56:205–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Starczynski J, Pepper C, Pratt G, Hooper L, Thomas A, Milligan D, et al. Common polymorphism G(-248)A in the promoter region of the bax gene results in significantly shorter survival in patients with chronic lymphocytic leukemia once treatment is initiated. J Clin Oncol. 2005;23:1514–21.

    Article  CAS  PubMed  Google Scholar 

  40. Fegan C, Starczynski J, Pratt G, Pepper C. The role of the bax gene polymorphism G(-248)A in chronic lymphocytic leukemia. Leukemia. 2006;20:1460–1.

    Article  CAS  PubMed  Google Scholar 

  41. Shang W, Shu M-M, Liu M, Wang A-M, Lv L-B, Zhao Y, et al. Elevated expressions of p53, CDKNA1, and Bax in placental villi from patients with recurrent spontaneous abortion. Eur Rev Med Pharmacol Sci. 2013;17:3376–80.

    CAS  PubMed  Google Scholar 

  42. Little J, Higgins JP, Ioannidis JP, Moher D, Gagnon F, von Elm E, et al. STrengthening the REporting of Genetic Association Studies (STREGA)—an extension of the STROBE statement. PLoS Med. 2009;3:6:e22.

    Google Scholar 

  43. Lahiri DK, Numberger JI. A rapid non-enzymatic method for the preparation of HMW DNA from blood for RFLP studies. Nucleic Acids Res. 1991;19:5444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun T, Miao X, Zhang X, Tan W, Xiong P, Lin D. Polymorphisms of death pathway genes FAS and FASL in esophageal squamous-cell carcinoma. J Natl Cancer Inst. 2004;96:1030–6.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Wang L-E, Sturgis EM, El-Naggar AK, Hong WK, Amos CI, et al. Polymorphisms of FAS and FAS ligand genes involved in the death pathway and risk and progression of squamous cell carcinoma of the head and neck. Clin Cancer Res. 2006;12:5596–602.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang N, Li X, Tao K, Jiang L, Ma T, Yan S, et al. BCL-2 (-938C > A) polymorphism is associated with breast cancer susceptibility. BMC Med Genet. 2011;12:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez S, Gaunt TR, Day INM. Hardy-Weinberg equilibrium testing of biological ascertainment for Mendelian randomization studies. Am J Epidemiol. 2009;169:505–14.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–5.

    Article  CAS  PubMed  Google Scholar 

  49. Kroeff LR, Mengue SS, Schmidt MI, Duncan BB, Favaretto ALF, Nucci LB. Fatores associados ao fumo em gestantes avaliadas em cidades brasileiras. Rev Saude Publica. 2004;38:261–7.

    Article  PubMed  Google Scholar 

  50. Ruiz-Linares A, Adhikari K, Acuña-Alonzo V, Quinto-Sanchez M, Jaramillo C, Arias W, et al. Admixture in Latin America: geographic structure, phenotypic diversity and self-perception of ancestry based on 7,342 individuals. PLoS Genet. 2014;10:e1004572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gilbert-Diamond D, Moore JH. Analysis of gene-gene interactions. Curr Protoc Hum Genet. 2011;1:Unit1.14.

    PubMed  Google Scholar 

  52. Kalish RB, Nguyen DP, Vardhana S, Gupta M, Perni SC, Witkin SS. A single nucleotide A>G polymorphism at position -670 in the Fas gene promoter: relationship to preterm premature rupture of fetal membranes in multifetal pregnancies. Am J Obstet Gynecol. 2005;192:208–12.

    Article  CAS  PubMed  Google Scholar 

  53. Sezgin M, Barlas IÖ, Yildir S, Türköz G, Ankarali HÇ, Şahin G, et al. Apoptosis-related Fas and FasL gene polymorphisms’ associations with knee osteoarthritis. Rheumatol Int. 2013;33:2039–43.

    Article  CAS  PubMed  Google Scholar 

  54. Jaslow CR, Carney JL, Kutteh WH. Diagnostic factors identified in 1020 women with two versus three or more recurrent pregnancy losses. Fertil Steril. 2010;93:1234–43.

    Article  CAS  PubMed  Google Scholar 

  55. Bhattacharya S, Townend J, Bhattacharya S. Recurrent miscarriage: are three miscarriages one too many? Analysis of a Scottish population-based database of 151,021 pregnancies. Eur J Obstet Gynecol Reprod Biol. 2010;150:24–7.

    Article  PubMed  Google Scholar 

  56. Rull K, Nagirnaja L, Laan M. Genetics of recurrent miscarriage: challenges, current knowledge, future directions. Front Genet. 2012;3:34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krieg SA, Shahine LK, Lathi RB. Environmental exposure to endocrine-disrupting chemicals and miscarriage. Fertil Steril. 2016;106:941–7.

    Article  CAS  PubMed  Google Scholar 

  58. Conforti A, Mascia M, Cioffi G, De Angelis C, Coppola G, De Rosa P, et al. Air pollution and female fertility: a systematic review of literature. Reprod Biol Endocrinol. 2018;16:117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mukherjee S, Velez Edwards DR, Baird DD, Savitz DA, Hartmann KE. Risk of miscarriage among black women and white women in a U.S. Prospective Cohort Study. Am J Epidemiol. 2013;177:1271–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Harb HM, Al-rshoud F, Dhillon R, Harb M, Coomarasamy A. Ethnicity and miscarriage: a large prospective observational study and meta-analysis. Fertil Steril. 2014;102:e81.

    Article  Google Scholar 

  61. Kesmodel U, Wisborg K, Olsen SF, Henriksen TB, Secher NJ. Moderate alcohol intake in pregnancy and the risk of spontaneous abortion. Alcohol Alcohol. 2002;37:87–92.

    Article  PubMed  Google Scholar 

  62. Lindbohm M-L, Sallmén M, Taskinen H. Effects of exposure to environmental tobacco smoke on reproductive health. Scand J Work Environ Health. 2002;28(Suppl 2):84–96.

    CAS  PubMed  Google Scholar 

  63. Wikström A-K, Stephansson O, Cnattingius S. Tobacco use during pregnancy and preeclampsia risk. Hypertension. 2010;55:1254–9.

    Article  CAS  PubMed  Google Scholar 

  64. Jeyabalan A, Powers RW, Durica AR, Harger GF, Roberts JM, Ness RB. Cigarette smoke exposure and angiogenic factors in pregnancy and preeclampsia. Am J Hypertens. 2008;21:943–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Karumanchi SA, Levine RJ. How does smoking reduce the risk of preeclampsia? Hypertension. 2010;55:1100–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kawashima A, Koide K, Ventura W, Hori K, Takenaka S, Maruyama D, et al. Effects of maternal smoking on the placental expression of genes related to angiogenesis and apoptosis during the first trimester. Zenclussen AC, editor. PLoS One. 2014;9:e106140.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995;80:293–9.

    Article  CAS  PubMed  Google Scholar 

  68. Chen K, Hu Z, Wang LE, Sturgis EM, El-naggar AK, Zhang W, et al. Single-nucleotide polymorphisms at the TP53-binding or responsive promoter regions of BAX and BCL2 genes and risk of squamous cell carcinoma of the head and neck. Carcinogenesis. 2007;28:2008–12.

    Article  CAS  PubMed  Google Scholar 

  69. Fraga LR, Dutra CG, Boquett JA, Vianna FSL, Gonçalves RO, Paskulin DD, et al. p53 signaling pathway polymorphisms associated to recurrent pregnancy loss. Mol Biol Rep. 2014;41:1871–7.

    Article  CAS  PubMed  Google Scholar 

  70. Vaskivuo TE, Stenbäck F, Karhumaa P, Risteli J, Dunkel L, Tapanainen JS. Apoptosis and apoptosis-related proteins in human endometrium. Mol Cell Endocrinol. 2000;165:75–83.

    Article  CAS  PubMed  Google Scholar 

  71. De Falco M, De Luca L, Acanfora F, Cavallotti I, Cottone G, Laforgia V, et al. Alteration of the Bcl-2:Bax ratio in the placenta as pregnancy proceeds. Histochem J. 2001;33:421–5.

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (grant no. 14/2253-2 PqG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (grant nos. 473115/2011-5 and 305839/2015-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Artur Bogo Chies.

Ethics declarations

This study was approved by the Research Ethics Committee of the HCPA (HCPA-CEP-CPPG) under protocol number #11-242. We obtained written, informed consent according to the Declaration of Helsinki from all individual participants included in this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 37 kb)

ESM 2

(DOC 62 kb)

ESM 3

(DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michita, R.T., Zambra, F.M.B., Fraga, L.R. et al. The role of FAS, FAS-L, BAX, and BCL-2 gene polymorphisms in determining susceptibility to unexplained recurrent pregnancy loss. J Assist Reprod Genet 36, 995–1002 (2019). https://doi.org/10.1007/s10815-019-01441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01441-w

Keywords

Navigation