Skip to main content
Log in

Current status of spent embryo media research for preimplantation genetic testing

  • Commentary
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

In recent years, a growing body of literature has emerged investigating the clinical utility of spent embryo media (SEM) for preimplantation genetic testing for aneuploidy (PGT-A) (Hammond et al. in Fertil Steril. 107(1):220–8, 2017; Xu et al. in Proc Natl Acad Sci USA. 113(42):11907–12, 2016; Shamonki et al. in Fertil Steril. 106(6):1312–8, 2016; Feichtinger et al. in Reprod BioMed Online. 34(6):583–9, 2017; Vera-Rodriguez et al. in Hum Reprod. 33(4):745–56, 2018; Kuznyetsov et al. in PLoS One. 13(5):e0197262, 2018; Ho et al. in Fertil Steril. 110(3):467–75, 2018; Capalbo et al. in Fertil Steril. 110(5):870–9, 2018). Most of these studies have reported moderate success rates, suggesting the need for improvements in sensitivity and specificity. The concordance between spent media and embryo biopsy or whole embryo was reported to be between 30.4 and 90%, with 50–70% correlation being the most representative (Xu et al. in Proc Natl Acad Sci USA. 113(42):11907–12, 2016; Shamonki et al. in Fertil Steril. 106(6):1312–8, 2016; Feichtinger et al. in Reprod BioMed Online. 34(6):583–9, 2017; Vera-Rodriguez et al. in Hum Reprod. 33(4):745–56, 2018; Kuznyetsov et al. in PLoS One. 13(5):e0197262, 2018; Ho et al. in Fertil Steril. 110(3):467–75, 2018). Here, we will analyze all spent media testing strategies including SEM collection methods, whole genome amplification (WGA) strategies, chromosome copy number detection, and bioinformatics analysis tools. We will propose improvements to further increase the accuracy and sensitivity of the assay before bringing PGT-A with SEM into the clinical sphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hammond ER, McGillivray BC, Wicker SM, Peek JC, Shelling AN, Stone P, et al. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: genetic contamination identified. Fertil Steril. 2017;107(1):220–8.

    Article  CAS  Google Scholar 

  2. Xu J, Fang R, Chen L, Chen D, Xiao JP, Yang W, et al. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc Natl Acad Sci USA. 2016;113(42):11907–12.

    Article  CAS  Google Scholar 

  3. Shamonki MI, Jin H, Haimowitz Z, Liu L. Proof of concept: preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil Steril. 2016;106(6):1312–8.

    Article  CAS  Google Scholar 

  4. Feichtinger M, Vaccari E, Carli L, Wallner E, Mädel U, Figl K, et al. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: a proof-of-concept pilot study. Reprod BioMed Online. 2017;34(6):583–9.

    Article  Google Scholar 

  5. Vera-Rodriguez M, Diez-Juan A, Jimenez-Almazan J, Martinez S, Navarro R, Peinado V, et al. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum Reprod. 2018;33(4):745–56.

    Article  CAS  Google Scholar 

  6. Kuznyetsov V, Madjunkova S, Antes R, Abramov R, Motamedi G, Ibarrientos Z, et al. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS One. 2018;13(5):e0197262.

    Article  Google Scholar 

  7. Ho JR, Arrach N, Rhodes-Long K, Ahmady A, Ingles S, Chung K, et al. Pushing the limits of detection: investigation of cell-free DNA for aneuploidy screening in embryos. Fertil Steril. 2018;110(3):467–75.

    Article  CAS  Google Scholar 

  8. Capalbo A, Romanelli V, Patassini C, Poli M, Girardi L, Giancani A, et al. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions. Fertil Steril. 2018;110(5):870–9.

    Article  CAS  Google Scholar 

  9. Barbash-Hazan S, Frumkin T, Malcov M, Yaron Y, Cohen T, Azem F, et al. Preimplantation aneuploid embryos undergo self-correction in correlation with their developmental potential. Fertil Steril. 2009;92(3):890–6.

    Article  Google Scholar 

  10. Munné S, Velilla E, Colls P, Bermudez MG, Vemuri MC, Steuerwald N, et al. Self-correction of chromosomally abnormal embryos in culture and implications for stem cell production. Fertil Steril. 2005;84(5):1328–34.

    Article  Google Scholar 

  11. Katz-Jaffe MG, McReynolds S, Gardner DK, Schoolcraft WB. The role of proteomics in defining the human embryonic secretome. Mol Hum Reprod. 2009;15(5):271–7.

    Article  CAS  Google Scholar 

  12. Pribenszky C, Nilselid AM, Montag M. Time-lapse culture with morphokinetic embryo selection improves pregnancy and live birth chances and reduces early pregnancy loss: a meta-analysis. Reproductive biomedicine online. 2017;35(5):511–20.

  13. Gianaroli L, Magli MC, Pomante A, Crivello AM, Cafueri G, Valerio M, et al. Blastocentesis: a source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil Steril. 2014;102(6):1692–9.

    Article  CAS  Google Scholar 

  14. Wu H, Ding C, Shen X, Wang J, Li R, Cai B, Xu Y, Zhong Y, Zhou C. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA. Medicine. 2015;94(12):e669.

  15. Liu W, Liu J, Du H, Ling J, Sun X, Chen D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann Med. 2017;49(4):319–28.

    Article  CAS  Google Scholar 

  16. Magli MC, Pomante A, Cafueri G, Valerio M, Crippa A, Ferraretti AP, et al. Preimplantation genetic testing: polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil Steril. 2016;105(3):676–83.

    Article  Google Scholar 

  17. Practice Committee of the American Society for Reproductive Medicine, Practice Committee of the Society for Assisted Reproductive Technology. Role of assisted hatching in in vitro fertilization: a guideline. Fertil Steril. 2014;102(2):348–51.

    Article  Google Scholar 

  18. Sathananthan H, Gunasheela S, Menezes J. Mechanics of human blastocyst hatching in vitro. Reprod BioMed Online. 2003;7(2):228–34.

    Article  Google Scholar 

  19. Gleicher N, Metzger J, Croft G, Kushnir VA, Albertini DF, Barad DH. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod Biol Endocrinol. 2017;15(1):33.

    Article  Google Scholar 

  20. Cimadomo D, Capalbo A, Ubaldi FM, Scarica C, Palagiano A, Canipari R, et al. The impact of biopsy on human embryo developmental potential during preimplantation genetic diagnosis. Biomed Res Int. 2016;2016:1–10.

    Article  Google Scholar 

  21. Chuang TH, Hsieh JY, Lee MJ, Lai HH, Hsieh CL, Wang HL, Chang YJ, Chen SU. Concordance between different trophectoderm biopsy sites and the inner cell mass of chromosomal composition measured with a next-generation sequencing platform. MHR: Basic science of reproductive medicine. 2018;24(12):593–601.

  22. Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, et al. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA. 2002;99(8):5261–6.

    Article  CAS  Google Scholar 

  23. Mai M, Hoyer JD, McClure RF. Use of multiple displacement amplification to amplify genomic DNA before sequencing of the α and β haemoglobin genes. J Clin Pathol. 2004;57(6):637–40.

    Article  CAS  Google Scholar 

  24. Voet T, Kumar P, Van Loo P, Cooke SL, Marshall J, Lin ML, et al. Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res. 2013;41(12):6119–38.

    Article  CAS  Google Scholar 

  25. Borgström E, Paterlini M, Mold JE, Frisen J, Lundeberg J. Comparison of whole genome amplification techniques for human single cell exome sequencing. PLoS One. 2017;12(2):e0171566.

    Article  Google Scholar 

  26. Telenius H, Carter NP, Bebb CE, Nordenskjo M, Ponder BA, Tunnacliffe A. Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics. 1992;13(3):718–25.

    Article  CAS  Google Scholar 

  27. Voullaire L, Wilton L, Slater H, Williamson R. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagn. 1999;19(9):846–51.

    Article  CAS  Google Scholar 

  28. Blagodatskikh KA, Kramarov VM, Barsova EV, Garkovenko AV, Shcherbo DS, Shelenkov AA, et al. Improved DOP-PCR (iDOP-PCR): a robust and simple WGA method for efficient amplification of low copy number genomic DNA. PLoS One. 2017;12(9):e0184507.

    Article  Google Scholar 

  29. Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338(6114):1622–6.

    Article  CAS  Google Scholar 

  30. Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Res. 2015;25(10):1499–507.

    Article  CAS  Google Scholar 

  31. Wells D, Alfarawati S, Fragouli E. Use of comprehensive chromosomal screening for embryo assessment: microarrays and CGH. Mol Hum Reprod. 2008;14(12):703–10.

    Article  CAS  Google Scholar 

  32. Fiorentino F, Bono S, Biricik A, Nuccitelli A, Cotroneo E, Cottone G, et al. Application of next-generation sequencing technology for comprehensive aneuploidy screening of blastocysts in clinical preimplantation genetic screening cycles. Hum Reprod. 2014;29(12):2802–13.

    Article  CAS  Google Scholar 

  33. Zheng H, Jin H, Liu L, Liu J, Wang WH. Application of next-generation sequencing for 24-chromosome aneuploidy screening of human preimplantation embryos. Mol Cytogenet. 2015;8(1):38.

    Article  Google Scholar 

  34. Tortoriello DV, Dayal M, Beyhan Z, Yakut T, Keskintepe L. Reanalysis of human blastocysts with different molecular genetic screening platforms reveals significant discordance in ploidy status. J Assist Reprod Genet. 2016;33(11):1467–71.

    Article  Google Scholar 

  35. Friedenthal J, Maxwell SM, Munné S, Kramer Y, McCulloh DH, McCaffrey C, et al. Next generation sequencing for preimplantation genetic screening improves pregnancy outcomes compared with array comparative genomic hybridization in single thawed euploid embryo transfer cycles. Fertil Steril. 2018;109(4):627–32.

    Article  CAS  Google Scholar 

  36. Lai HH, Chuang TH, Wong LK, Lee MJ, Hsieh CL, Wang HL, et al. Identification of mosaic and segmental aneuploidies by next-generation sequencing in preimplantation genetic screening can improve clinical outcomes compared to array-comparative genomic hybridization. Mol Cytogenet. 2017;10(1):14.

    Article  Google Scholar 

  37. Chen D, Zhen H, Qiu Y, Liu P, Zeng P, Xia J, et al. Comparison of single cell sequencing data between two whole genome amplification methods on two sequencing platforms. Sci Rep. 2018;8(1):4963.

    Article  Google Scholar 

  38. Canick JA, Palomaki GE, Kloza EM, Lambert-Messerlian GM, Haddow JE. The impact of maternal plasma DNA fetal fraction on next generation sequencing tests for common fetal aneuploidies. Prenat Diagn. 2013;33(7):667–74.

    Article  CAS  Google Scholar 

  39. Nygren AO, Dean J, Jensen TJ, Kruse S, Kwong W, van den Boom D, et al. Quantification of fetal DNA by use of methylation-based DNA discrimination. Clin Chem. 2010;56(10):1627–35.

    Article  CAS  Google Scholar 

  40. Barrett AN, Xiong L, Tan TZ, Advani HV, Hua R, Laureano-Asibal C, et al. Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms. PLoS One. 2017;12(10):e0186771.

    Article  Google Scholar 

  41. Artieri CG, Haverty C, Evans EA, Goldberg JD, Haque IS, Yaron Y, et al. Noninvasive prenatal screening at low fetal fraction: comparing whole-genome sequencing and single-nucleotide polymorphism methods. Prenat Diagn. 2017;37(5):482–90.

    Article  CAS  Google Scholar 

  42. Sillence KA, Roberts LA, Hollands HJ, Thompson HP, Kiernan M, Madgett TE, Welch CR, Avent ND. Fetal sex and RHD genotyping with digital PCR demonstrates greater sensitivity than real-time PCR. Clinical chemistry. 2015 Nov 1;61(11):1399-407.

  43. Svobodová I, Pazourková E, Hořínek A, Novotná M, Calda P, Korabečná M. Performance of droplet digital PCR in non-invasive fetal RHD genotyping-comparison with a routine real-time PCR based approach. PLoS One. 2015;10(11):e0142572.

    Article  Google Scholar 

  44. Ata B, Kaplan B, Danzer H, Glassner M, Opsahl M, Tan SL, et al. Array CGH analysis shows that aneuploidy is not related to the number of embryos generated. Reprod BioMed Online. 2012;24(6):614–20.

    Article  CAS  Google Scholar 

  45. Franasiak JM, Forman EJ, Hong KH, Werner MD, Upham KM, Treff NR, et al. The nature of aneuploidy with increasing age of the female partner: a review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil Steril. 2014;101(3):656–63.

    Article  Google Scholar 

  46. Munné S, Cohen J. Advanced maternal age patients benefit from preimplantation genetic diagnosis of aneuploidy. Fertil Steril. 2017;107(5):1145–6.

    Article  Google Scholar 

  47. Munne S, Kaplan B, Frattarelli JL, Gysler M, Child TJ, Nakhuda G, et al. Global multicenter randomized controlled trial comparing single embryo transfer with embryo selected by preimplantation genetic screening using next-generation sequencing versus morphologic assessment. Fertil Steril. 2017;108(3):e19.

    Article  Google Scholar 

  48. Rubio C, Bellver J, Rodrigo L, Castillón G, Guillén A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107(5):1122–9.

    Article  Google Scholar 

  49. Rosenbluth EM, Shelton DN, Wells LM, Sparks AE, Van Voorhis BJ. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil Steril. 2014;101(5):1493–500.

    Article  CAS  Google Scholar 

  50. Kropp J, Salih SM, Khatib H. Expression of microRNAs in bovine and human pre-implantation embryo culture media. Front Genet. 2014;5:91.

    Article  Google Scholar 

  51. Cuman C, Van Sinderen M, Gantier MP, Rainczuk K, Sorby K, Rombauts L, et al. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine. 2015;2(10):1528–35.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil Arrach.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belandres, D., Shamonki, M. & Arrach, N. Current status of spent embryo media research for preimplantation genetic testing. J Assist Reprod Genet 36, 819–826 (2019). https://doi.org/10.1007/s10815-019-01437-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-019-01437-6

Keywords

Navigation