Skip to main content
Log in

A microwell culture system that allows group culture and is compatible with human single media

  • Embryo Biology
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

A microwell culture system that facilitates group culture, such as well-of-the-well (WOW), improves embryonic development in an individual culture. We examined the effect of WOW on embryonic development in vitro with commercially available human single culture media.

Methods

Using four different commercial human single culture media, in vitro development and imprinted gene expression of bovine embryos cultured in WOW were compared to droplet culture (one zygote per drop). To determine the effects of microwell and group culture on embryonic development, different numbers of embryos were cultured in droplet or WOW. Diffusion simulation of accumulating metabolites was conducted using the finite volume method.

Results

WOW had a positive effect on bovine embryonic development, regardless of the type of single culture media. Imprinted gene expression was not different between droplet- and WOW-derived blastocysts. The microwell and group cultures in WOW showed a significant positive effect on the rate of total blastocysts and the rate of development to the expanded and hatching blastocyst stages. The assumed cumulative metabolite concentration of WOW with one embryo was 1.47 times higher than that of droplet culture with one embryo. Furthermore, the concentration of WOW with three embryos was 1.54 times higher than that of WOW with one embryo.

Conclusions

In using human single culture media, a microwell culture system that allows group culture could be a powerful clinical tool for improving the success of assisted reproductive technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91:305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rebar RW. What are the risks of the assisted reproductive technologies (ART) and how can they be minimized? Reprod Med Biol. 2013;12:151–8.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Summers MC, Biggers JD. Chemically defined media and the culture of mammalian preimplantation embryos: historical perspective and current issues. Hum Reprod Update. 2003;9:557–82.

    Article  CAS  PubMed  Google Scholar 

  4. Gardner DK, Lane M. Culture of viable human blastocysts in defined sequential serum-free media. Hum Reprod. 1998;13(Suppl 3):148–59. discussion 160

    Article  PubMed  Google Scholar 

  5. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril. 2008;90:473–83.

    Article  PubMed  Google Scholar 

  6. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update. 1997;3:367–82.

    Article  CAS  PubMed  Google Scholar 

  7. Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil. 1994;102:305–12.

    Article  CAS  PubMed  Google Scholar 

  8. Calhaz-Jorge C, De Geyter C, Kupka MS, de Mouzon J, Erb K, Mocanu E, et al. Assisted reproductive technology in Europe, 2013: results generated from European registers by ESHRE. Hum Reprod. 2017;32:1957–73.

    Article  CAS  PubMed  Google Scholar 

  9. Petersen BM, Boel M, Montag M, Gardner DK. Development of a generally applicable morphokinetic algorithm capable of predicting the implantation potential of embryos transferred on day 3. Hum Reprod. 2016;31:2231–44.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gardner DK, Meseguer M, Rubio C, Treff NR. Diagnosis of human preimplantation embryo viability. Hum Reprod Update. 2015;21:727–47.

    Article  CAS  PubMed  Google Scholar 

  11. Smith GD, Takayama S, Swain JE. Rethinking in vitro embryo culture: new developments in culture platforms and potential to improve assisted reproductive technologies. Biol Reprod. 2012;86:62.

    PubMed  Google Scholar 

  12. O'Doherty EM, Wade MG, Hill JL, Boland MP. Effects of culturing bovine oocytes either singly or in groups on development to blastocysts. Theriogenology. 1997;48:161–9.

    Article  CAS  PubMed  Google Scholar 

  13. Larson MA, Kubisch HM. The effects of group size on development and interferon-tau secretion by in-vitro fertilized and cultured bovine blastocysts. Hum Reprod. 1999;14:2075–9.

    Article  CAS  PubMed  Google Scholar 

  14. Khurana NK, Niemann H. Effects of oocyte quality, oxygen tension, embryo density, cumulus cells and energy substrates on cleavage and morula/blastocyst formation of bovine embryos. Theriogenology. 2000;54:741–56.

    Article  CAS  PubMed  Google Scholar 

  15. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod. 1993;48:377–85.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson MH, Nasr-Esfahani MH. Radical solutions and cultural problems: could free oxygen radicals be responsible for the impaired development of preimplantation mammalian embryos in vitro? Bioessays. 1994;16:31–8.

    Article  CAS  PubMed  Google Scholar 

  17. Fukui Y, Lee ES, Araki N. Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J Anim Sci. 1996;74:2752–8.

    Article  CAS  PubMed  Google Scholar 

  18. Vajta G, Peura TT, Holm P, Paldi A, Greve T, Trounson AO, et al. New method for culture of zona-included or zona-free embryos: the well of the well (WOW) system. Mol Reprod Dev. 2000;55:256–64.

    Article  CAS  PubMed  Google Scholar 

  19. Hoelker M, Rings F, Lund Q, Phatsara C, Schellander K, Tesfaye D. Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments. Reprod Domest Anim. 2010;45:e138–45.

    CAS  PubMed  Google Scholar 

  20. Hoelker M, Rings F, Lund Q, Ghanem N, Phatsara C, Griese J, et al. Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. Reproduction. 2009;137:415–25.

    Article  CAS  PubMed  Google Scholar 

  21. Sugimura S, Akai T, Somfai T, Hirayama M, Aikawa Y, Ohtake M, et al. Time-lapse cinematography-compatible polystyrene-based microwell culture system: a novel tool for tracking the development of individual bovine embryos. Biol Reprod. 2010;83:970–8.

    Article  CAS  PubMed  Google Scholar 

  22. Sugimura S, Akai T, Imai K. Selection of viable in vitro-fertilized bovine embryos using time-lapse monitoring in microwell culture dishes. J Reprod Dev. 2017;63:353–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Menezo YJ, Herubel F. Mouse and bovine models for human IVF. Reprod BioMed Online. 2002;4:170–5.

    Article  CAS  PubMed  Google Scholar 

  24. Sugimura S, Akai T, Hashiyada Y, Somfai T, Inaba Y, Hirayama M, et al. Promising system for selecting healthy in vitro-fertilized embryos in cattle. PLoS One. 2012;7:e36627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Brackett BG, Oliphant G. Capacitation of rabbit spermatozoa in vitro. Biol Reprod. 1975;12:260–74.

    Article  CAS  PubMed  Google Scholar 

  26. Stringfellow DA, Givens SM. Manual of the International Embryo Transfer Society, 4th ed. International Embryo Transfer 2010.

  27. Hashiyada Y, Okada M, Imai K. Transition of the pregnancy rate of bisected bovine embryos after co-transfer with trophoblastic vesicles prepared from in vivo-cultured in vitro-fertilized embryos. J Reprod Dev. 2005;51:749–56.

    Article  PubMed  Google Scholar 

  28. Matsuura K. Numerical calculations for diffusion effects in the well-of-the-well culture system for mammalian embryos. Reprod Fertil Dev. 2014;26:742–51.

    Article  PubMed  Google Scholar 

  29. Swain JE, Smith GD. Advances in embryo culture platforms: novel approaches to improve preimplantation embryo development through modifications of the microenvironment. Hum Reprod Update. 2011;17:541–57.

    Article  CAS  PubMed  Google Scholar 

  30. Dominguez F, Gadea B, Esteban FJ, Horcajadas JA, Pellicer A, Simon C. Comparative protein-profile analysis of implanted versus non-implanted human blastocysts. Hum Reprod. 2008;23:1993–2000.

    Article  CAS  PubMed  Google Scholar 

  31. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod. 2003;69:1109–17.

    Article  CAS  PubMed  Google Scholar 

  32. Gardner DK, Hamilton R, McCallie B, Schoolcraft WB, Katz-Jaffe MG. Human and mouse embryonic development, metabolism and gene expression are altered by an ammonium gradient in vitro. Reproduction. 2013;146:49–61.

    Article  CAS  PubMed  Google Scholar 

  33. Virant-Klun I, Tomazevic T, Vrtacnik-Bokal E, Vogler A, Krsnik M, Meden-Vrtovec H. Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil Steril. 2006;85:526–8.

    Article  CAS  PubMed  Google Scholar 

  34. Kleijkers SH, van Montfoort AP, Bekers O, Coonen E, Derhaag JG, Evers JL, et al. Ammonium accumulation in commercially available embryo culture media and protein supplements during storage at 2–8 degrees C and during incubation at 37 degrees C. Hum Reprod. 2016;31:1192–9.

    Article  CAS  PubMed  Google Scholar 

  35. Vajta G, Korosi T, Du Y, Nakata K, Ieda S, Kuwayama M, et al. The well-of-the-well system: an efficient approach to improve embryo development. Reprod BioMed Online. 2008;17:73–81.

    Article  PubMed  Google Scholar 

  36. Sugimura S, Akai T, Hashiyada Y, Aikawa Y, Ohtake M, Matsuda H, et al. Effect of embryo density on in vitro development and gene expression in bovine in vitro-fertilized embryos cultured in a microwell system. J Reprod Dev. 2013;59:115–22.

    Article  CAS  PubMed  Google Scholar 

  37. Kang SS, Ofuji S, Imai K, Huang W, Koyama K, Yanagawa Y, et al. The efficacy of the well of the well (WOW) culture system on development of bovine embryos in a small group and the effect of number of adjacent embryos on their development. Zygote. 2015;23:412–5.

    Article  PubMed  Google Scholar 

  38. Wydooghe E, Vandaele L, Piepers S, Dewulf J, Van den Abbeel E, De Sutter P, et al. Individual commitment to a group effect: strengths and weaknesses of bovine embryo group culture. Reproduction. 2014;148:519–29.

    Article  CAS  PubMed  Google Scholar 

  39. Gopichandran N, Leese HJ. The effect of paracrine/autocrine interactions on the in vitro culture of bovine preimplantation embryos. Reproduction. 2006;131:269–77.

    Article  CAS  PubMed  Google Scholar 

  40. Roudebush WE, Wininger JD, Jones AE, Wright G, Toledo AA, Kort HI, et al. Embryonic platelet-activating factor: an indicator of embryo viability. Hum Reprod. 2002;17:1306–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Editage (https://www.editage.jp/) for editing the draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Satoshi Sugimura or Hirotsune Kaijima.

Ethics declarations

This study has been approved by Minotomirai Yume Clinic ethics committee.

Electronic supplementary material

Supplementary Movie S1

Diffusion kinetics of metabolites from embryos cultured in droplet and LinKID micro8 (LinKID). Cumulative metabolites in droplet with one embryo (left) and LinKID with three embryos (right) which color indicates the metabolites concentration. Minimum concentration, zero mol is colored with blue and maximum value, 3.0E−09 mol is colored with red on the right color scale (AVI 554 kb)

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ieda, S., Akai, T., Sakaguchi, Y. et al. A microwell culture system that allows group culture and is compatible with human single media. J Assist Reprod Genet 35, 1869–1880 (2018). https://doi.org/10.1007/s10815-018-1252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1252-z

Keywords

Navigation