Skip to main content

Advertisement

Log in

Use of human-derived stem cells to create a novel, in vitro model designed to explore FMR1 CGG repeat instability amongst female premutation carriers

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Objective

Create a model, using reprogrammed cells, to provide a platform to identify the mechanisms of CGG repeat instability amongst female fragile X mental retardation 1 gene (FMR1) premutation (PM) carriers.

Methods

Female PM carriers (with and without POI) and healthy controls were enrolled from June 2013 to April 2014. Patient-derived fibroblasts (FB) were reprogrammed to induced pluripotent stem cells (iPSC) using viral vectors, encoding KLF4, OCT4, SOX2, and MYC. FMR1 CGG repeat-primed PCR was used to assess the triplet repeat structure of the FMR1 gene. FMR1 promoter methylation (%) was determined using FMR1 methylation PCR (mPCR). Quantification of FMR1 transcripts by RT-qPCR was used to evaluate the effect of reprogramming on gene transcription, as well as to correlate patient phenotype with FMR1 expression. Production of FMR1 protein (FMRP) was determined using a liquid bead array-based immunoassay.

Results

Upon induction to pluripotency, all control clones exhibited maintenance of progenitor cell CGG repeat number, whereas 10 of 12 clones derived from PM carriers maintained their input CGG repeat number, one of which expanded and one contracted. As compared to parent FB, iPSC clones exhibited a skewed methylation pattern; however, downstream transcription and translation appeared unaffected. Further, the PM carriers, regardless of phenotype, exhibited similar FMR1 transcription and translation to the controls.

Conclusions

This is the first study to establish a stem cell model aimed to understand FMR1 CGG repeat instability amongst female PM carriers. Our preliminary data indicate that CGG repeat number, transcription, and translation are conserved upon induction to pluripotency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sullivan SD, Welt C, Sherman S. FMR1 and the continuum of primary ovarian insufficiency. Semin Reprod Med. 2011;29(4):299–307.

    Article  PubMed  Google Scholar 

  2. ACOG Committee Opinion No. 469: Carrier screening for fragile X syndrome. Obstet Gynecol. 2010;116(4):1008–10.

  3. Jacquemont S, Hagerman RJ, Leehey MA, Hall DA, Levine RA, Brunberg JA, et al. Penetrance of the fragile X-associated tremor/ataxia syndrome in a premutation carrier population. JAMA. 2004;291(4):460–9.

    Article  PubMed  CAS  Google Scholar 

  4. Sullivan AK, Marcus M, Epstein MP, Allen EG, Anido AE, Paquin JJ, et al. Association of FMR1 repeat size with ovarian dysfunction. Hum Reprod. 2005;20(2):402–12.

    Article  PubMed  CAS  Google Scholar 

  5. Sherman SL, Curnow EC, Easley CA, Jin P, Hukema RK, Tejada M, et al. Use of model systems to understand the etiology of fragile X-associated primary ovarian insufficiency (FXPOI). J Neurodev Disord. 2014;6(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Allingham-Hawkins DJ, Babul-Hirji R, Chitayat D, Holden JJA, Yang KT, Lee C, et al. Fragile X premutation is a significant risk factor for premature ovarian failure: the international collaborative POF in fragile X study—preliminary data. Am J Med Genet. 1999;83(4):322–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Sherman SL. Premature ovarian failure in the fragile X syndrome. Am J Med Genet. 2000;97(3):189–94.

    Article  PubMed  CAS  Google Scholar 

  8. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol. 2008;68(4):499–509.

    Article  Google Scholar 

  10. Wittenberger MD, Hagerman RJ, Sherman SL, McConkie-Rosell A, Welt CK, Rebar RW, et al. The FMR1 premutation and reproduction. Fertil Steril. 2007;87(3):456–65.

    Article  PubMed  CAS  Google Scholar 

  11. Bretherick KL, Fluker MR, Robinson WP. FMR1 repeat sizes in the gray zone and high end of the normal range are associated with premature ovarian failure. Hum Genet. 2005;117(4):376–82.

    Article  PubMed  CAS  Google Scholar 

  12. Hagerman RJ, Leehey M, Heinrichs W, Tassone F, Wilson R, Hills J, et al. Intention tremor, parkinsonism, and generalized brain atrophy in male carriers of fragile X. Neurology. 2001;57(1):127–30.

    Article  PubMed  CAS  Google Scholar 

  13. Garcia-Alegria E, Ibanez B, Minguez M, Poch M, Valiente A, Sanz-Parra A, et al. Analysis of FMR1 gene expression in female premutation carriers using robust segmented linear regression models. RNA. 2007;13(5):756–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hoffman GE, Le WW, Entezam A, et al. Ovarian abnormalities in a mouse model of fragile X primary ovarian insufficiency. J Histochem Cytochem. 2012;60(6):439–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lu C, Lin L, Tan H, Wu H, Sherman SL, Gao F, et al. Fragile X premutation RNA is sufficient to cause primary ovarian insufficiency in mice. Hum Mol Genet. 2012;21(23):5039–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ferder I, Parborell F, Sundblad V, Chiauzzi V, Gomez K, Charreau EH, et al. Expression of fragile X mental retardation protein and Fmr1 mRNA during folliculogenesis in the rat. Reproduction. 2013;145(4):335–43.

    Article  PubMed  CAS  Google Scholar 

  17. Bontekoe CJ, Bakker CE, Nieuwenhuizen IM, van der Linde H, Lans H, de Lange D, et al. Instability of a (CGG)98 repeat in the Fmr1 promoter. Hum Mol Genet. 2001;10(16):1693–9.

    Article  PubMed  CAS  Google Scholar 

  18. Rubin LL. Stem cells and drug discovery: the beginning of a new era? Cell. 2008;132(4):549–52.

    Article  PubMed  CAS  Google Scholar 

  19. Ramathal C, Durruthy-Durruthy J, Sukhwani M, Arakaki JE, Turek PJ, Orwig KE, et al. Fate of iPSCs derived from azoospermic and fertile men following xenotransplantation to murine seminiferous tubules. Cell Rep. 2014;7(4):1284–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Durruthy Durruthy J, Ramathal C, Sukhwani M, Fang F, Cui J, Orwig KE, et al. Fate of induced pluripotent stem cells following transplantation to murine seminiferous tubules. Hum Mol Genet. 2014;23(12):3071–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Leng L, Tan Y, Gong F, Hu L, Ouyang Q, Zhao Y, et al. Differentiation of primordial germ cells from induced pluripotent stem cells of primary ovarian insufficiency. Hum Reprod. 2015;30(3):737–48.

    Article  PubMed  CAS  Google Scholar 

  22. Hukema RK, Buijsen RA, Raske C, Severijnen LA, Nieuwenhuizen-Bakker I, Minneboo M, et al. Induced expression of expanded CGG RNA causes mitochondrial dysfunction in vivo. Cell Cycle. 2014;13(16):2600–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen L, Hadd A, Sah S, Filipovic-Sadic S, Krosting J, Sekinger E, et al. An information-rich CGG repeat primed PCR that detects the full range of fragile X expanded alleles and minimizes the need for southern blot analysis. J Mol Diagn. 2010;12(5):589–600.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Filipovic-Sadic S, Sah S, Chen L, Krosting J, Sekinger E, Zhang W, et al. A novel FMR1 PCR method for the routine detection of low abundance expanded alleles and full mutations in fragile X syndrome. Clin Chem. 2010;56(3):399–408.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. Tassone F, Pan R, Amiri K, Taylor AK, Hagerman PJ. A rapid polymerase chain reaction-based screening method for identification of all expanded alleles of the fragile X (FMR1) gene in newborn and high-risk populations. J Mol Diagn. 2008;10(1):43–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chen L, Hadd AG, Sah S, Houghton JF, Filipovic-Sadic S, Zhang W, et al. High-resolution methylation polymerase chain reaction for fragile X analysis: evidence for novel FMR1 methylation patterns undetected in southern blot analyses. Genet Med. 2011;13(6):528–38.

    Article  PubMed  PubMed Central  Google Scholar 

  27. LaFauci G, Adayev T, Kascsak R, Kascsak R, Nolin S, Mehta P, et al. Fragile X screening by quantification of FMRP in dried blood spots by a Luminex immunoassay. J Mol Diagn. 2013;15(4):508–17.

    Article  PubMed  CAS  Google Scholar 

  28. Darnell JC, Van Driesche SJ, Zhang C, et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146(2):247–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Mirkin SM. Expandable DNA repeats and human disease. Nature. 2007;447(7147):932–40.

    Article  PubMed  CAS  Google Scholar 

  30. Lokanga RA, Entezam A, Kumari D, Yudkin D, Qin M, Smith CB, et al. Somatic expansion in mouse and human carriers of fragile X premutation alleles. Hum Mutat. 2013;34(1):157–66.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72.

    Article  PubMed  CAS  Google Scholar 

  32. Park IH, Lerou PH, Zhao R, Huo H, Daley GQ. Generation of human-induced pluripotent stem cells. Nat Protoc. 2008;3(7):1180–6.

    Article  PubMed  CAS  Google Scholar 

  33. Sheridan SD, Theriault KM, Reis SA, Zhou F, Madison JM, Daheron L, et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS One. 2011;6(10):e26203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. de Esch CE, Ghazvini M, Loos F, Schelling-Kazaryan N, Widagdo W, Munshi ST, et al. Epigenetic characterization of the FMR1 promoter in induced pluripotent stem cells from human fibroblasts carrying an unmethylated full mutation. Stem Cell Rep. 2014;3(4):548–55.

    Article  CAS  Google Scholar 

  35. Willemsen R, Levenga J, Oostra BA. CGG repeat in the FMR1 gene: size matters. Clin Genet. 2011;80(3):214–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tassone F, Beilina A, Carosi C, Albertosi S, Bagni C, Li L, et al. Elevated FMR1 mRNA in premutation carriers is due to increased transcription. RNA. 2007;13(4):555–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Allen EG, He W, Yadav-Shah M, Sherman SL. A study of the distributional characteristics of FMR1 transcript levels in 238 individuals. Hum Genet. 2004;114(5):439–47.

    Article  PubMed  CAS  Google Scholar 

  38. Pretto DI, Eid JS, Yrigollen CM, Tang HT, Loomis EW, Raske C, et al. Differential increases of specific FMR1 mRNA isoforms in premutation carriers. J Med Genet. 2015;52(1):42–52.

    Article  PubMed  CAS  Google Scholar 

  39. Kenneson A, Zhang F, Hagedorn CH, Warren ST. Reduced FMRP and increased FMR1 transcription is proportionally associated with CGG repeat number in intermediate-length and premutation carriers. Hum Mol Genet. 2001;10(14):1449–54.

    Article  PubMed  CAS  Google Scholar 

  40. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ. Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet. 2000;66(1):6–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Renee Reijo Pera for the initial conception of the project, and technical support in stem cell culture, and Drs. LaFauci, Dobkin and Brown, at Institute for Basic Research in Developmental Disabilities, for their FMRP analysis using the Luminex immunoassay. This work was funded by U54HD068158.

Author information

Authors and Affiliations

Authors

Contributions

S.G. and V.B. conceived the project. S.G., V.S., and G.L. designed the experiments. S.G, G.W., and G.L. performed the experiments. S.G., V.B, G.L., and V.S. helped with inputs and interpretation of data. S.G. wrote the paper, and all authors read and approved the final manuscript.

Corresponding author

Correspondence to Stephanie L. F. Gustin.

Additional information

Stephanie L. F. Gustin First author

Gary Latham and Vittorio Sebastiano CoSenior authors

Electronic supplementary material

ESM 1

(DOCX 468 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gustin, S.L.F., Wang, G., Baker, V.M. et al. Use of human-derived stem cells to create a novel, in vitro model designed to explore FMR1 CGG repeat instability amongst female premutation carriers. J Assist Reprod Genet 35, 1443–1455 (2018). https://doi.org/10.1007/s10815-018-1237-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-018-1237-y

Keywords

Navigation