Skip to main content

Advertisement

Log in

A novel oocyte maturation trigger using 1500 IU of human chorionic gonadotropin plus 450 IU of follicle-stimulating hormone may decrease ovarian hyperstimulation syndrome across all in vitro fertilization stimulation protocols

  • Assisted Reproduction Technologies
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

An Author Correction to this article was published on 25 November 2017

This article has been updated

Abstract

Purpose

Modification of the trigger used to induce final oocyte maturation in in vitro fertilization (IVF) is a major strategy used to reduce the risk of ovarian hyperstimulation syndrome (OHSS). A novel trigger composed of 1500 IU of human chorionic gonadotropin (hCG) plus 450 IU of follicle-stimulating hormone (FSH) has been developed to reduce OHSS risk. This study compares outcomes of the novel trigger to conventional triggers used in high-risk OHSS patients undergoing IVF.

Methods

In this retrospective cohort study, IVF cycles at high risk for OHSS based on a serum estradiol > 5000 pg/ml on trigger day conducted between January 2008 and February 2016 were evaluated. Oocyte maturation was induced with the novel trigger (1500 IU hCG plus 450 IU FSH) or a conventional trigger [3300 IU hCG, gonadotropin-releasing hormone agonist (GnRHa) alone, or GnRHa plus 1500 IU hCG]. IVF cycle outcomes were compared. Trigger strategies were examined for associations with OHSS development using logistic regression.

Results

Among 298 eligible IVF cycles identified, there were no differences in oocyte maturation, fertilization, embryo quality, or pregnancy outcomes among all triggers. After adjusting for serum estradiol level and number of follicles, the novel trigger was associated with lower odds of OHSS symptom development compared to the 3300 IU hCG and GnRHa plus hCG 1500 IU triggers (p = 0.007 and 0.04, respectively).

Conclusions

This study suggests that 1500 IU hCG plus 450 IU FSH may be associated with decreased OHSS symptoms compared to conventional triggers, while producing similar IVF and pregnancy outcomes. More important, this novel trigger may provide a superior alternative in down-regulated cycles and in patients with hypothalamic dysfunction where GnRHa triggers cannot be utilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 25 November 2017

    The original version of this article unfortunately contained a mistake. The middle initial of Douglas A. Mata was omitted. The original article has been corrected.

References

  1. Navot D, Relou A, Birkenfeld A, Rabinowitz R, Brzezinski A, Margalioth E. Risk factors and prognostic variables in the ovarian hyperstimulation syndrome. Am J Obstet Gynecol. 1988;159(1):210–5.

    Article  CAS  PubMed  Google Scholar 

  2. Delvigne A, Demoulin A, Smitz J, Donnez J, Koninckx P, Dhont M, et al. The ovarian hyperstimulation syndrome in in-vitro fertilization: a Belgian multicentric study. I. Clinical and biological features. Hum Reprod. 1993;8(9):1353–60.

    Article  CAS  PubMed  Google Scholar 

  3. Enskog A, Henriksson M, Unander M, Nilsson L, Brännström M. Prospective study of the clinical and laboratory parameters of patients in whom ovarian hyperstimulation syndrome developed during controlled ovarian hyperstimulation for in vitro fertilization. Fertil Steril. 1999;71(5):808–14.

    Article  CAS  PubMed  Google Scholar 

  4. Schenker JG, Polishuk WZ. Ovarian hyperstimulation syndrome. Obstet Gynecol. 1975;46(1):23–8.

    Article  CAS  PubMed  Google Scholar 

  5. Goldsman MP, Pedram A, Dominguez CE, Ciuffardi I, Levin E, Asch RH. Increased capillary permeability induced by human follicular fluid: a hypothesis for an ovarian origin of the hyperstimulation syndrome. Fertil Steril. 1995;63(2):268–72.

    Article  CAS  PubMed  Google Scholar 

  6. Mor YS, Schenker JG. Ovarian hyperstimulation syndrome and thrombotic events. Am J Reprod Immunol. 2014;72(6):541–8.

    Article  PubMed  Google Scholar 

  7. Balasch J, Carmona F, Llach J, Arroyo V, Jové I, Vanrell JA. Acute prerenal failure and liver dysfunction in a patient with severe ovarian hyperstimulation syndrome. Hum Reprod. 1990;5(3):348–51.

    Article  CAS  PubMed  Google Scholar 

  8. Abramov Y, Elchalal U, Schenker JG. Pulmonary manifestations of severe ovarian hyperstimulation syndrome: a multicenter study. Fertil Steril. 1999;71(4):645–51.

    Article  CAS  PubMed  Google Scholar 

  9. Golan A, Ron-el R, Herman A, Soffer Y, Weinraub Z, Caspi E. Ovarian hyperstimulation syndrome: an update review. Obstet Gynecol Surv. 1989;44(6):430–40.

    Article  CAS  PubMed  Google Scholar 

  10. Delvinge A, Rozenberg S. Epidemiology and prevention of ovarian hyperstimulation syndrome (OHSS): a review. Hum Reprod Update. 2002;8(6):559–77.

    Article  Google Scholar 

  11. McClure N, Healy DL, Rogers PAW, Sullivan J, Robertson DM, Haning RV, et al. Vascular endothelial growth factor as capillary permeability agent in ovarian hyperstimulation syndrome. Lancet. 1994;344(8917):235–6.

    Article  CAS  PubMed  Google Scholar 

  12. Levin ER, Rosen GF, Cassidenti DL, Yee B, Meldrum D, Wisot A, et al. Role of vascular endothelial cell growth factor in ovarian hyperstimulation syndrome. J Clin Invest. 1998;102(11):1978–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bergh PA, Navot D. Ovarian hyperstimulation syndrome: a review of pathophysiology. J Assist Reprod Genet. 1992;9(5):429–38.

    Article  CAS  PubMed  Google Scholar 

  14. Elchalal U, Schenker JG. The pathophysiology of ovarian hyperstimulation syndrome—views and ideas. Hum Reprod. 1997;12(6):1129–37.

    Article  CAS  PubMed  Google Scholar 

  15. Wallach E, Schenker JG, Weinstein D. Ovarian hyperstimulation syndrome: a current survey. Fertil Steril. 1978;30(3):255–68.

    Article  Google Scholar 

  16. Yen SS, Llerena O, Little B, Pearson OH. Disappearance rates of endogenous luteinizing hormone and chorionic gonadotropin in man. J Clin Endocrinol Metab. 1968;28(12):1763–7.

    Article  CAS  PubMed  Google Scholar 

  17. Schlach DS, Parlow AF, Boon RC, Reichlin S. Measurement of luteinizing hormone in plasma by radioimmunoassay. J Clin Invest. 1968;47(3):665–78.

    Article  Google Scholar 

  18. Rizkallah T, Gurpide E, Vande Wiele RL. Metabolism of HCG in man. J Clin Endocrinol Metab. 1969;29(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  19. Rao CV. Differential properties of human chorionic gonadotrophin and human luteinizing hormone binding to plasma membranes of bovine corpora lutea. Acta Endocrinol. 1979;90(4):696–710.

    CAS  PubMed  Google Scholar 

  20. Kashyap S, Parker K, Cedars MI, Rosenwaks Z. Ovarian hyperstimulation syndrome prevention strategies: reducing the human chorionic gonadotropin trigger dose. Semin Reprod Med. 2010;28(6):475–85.

    Article  CAS  PubMed  Google Scholar 

  21. Neulen J, Yan Z, Raczek S, Weindel K, Keck C, Weich HA, et al. Human chorionic gonadotropin-dependent expression of vascular endothelial growth factor/vascular permeability factor in human granulosa cells: importance in ovarian hyperstimulation syndrome. J Clin Endocrinol Metab. 1995;80(6):1967–71.

    CAS  PubMed  Google Scholar 

  22. Wang T-H, Horng S-G, Chang C-L, Wu H-M, Tsai Y-J, Wang H-S, et al. Human chorionic gonadotropin-induced ovarian hyperstimulation syndrome is associated with up-regulation of vascular endothelial growth factor. J Clin Endocrinol Metab. 2002;87(7):3300–8.

    Article  CAS  PubMed  Google Scholar 

  23. Schenker JG. Prevention and treatment of ovarian hyperstimulation. Hum Reprod. 1993;8(5):653–9.

    Article  CAS  PubMed  Google Scholar 

  24. Grochowski D, Wolczynski S, Kuczynski W, Domitrz J, Szamatowicz J, Szamatowicz M. Correctly timed coasting reduces the risk of ovarian hyperstimulation syndrome and gives good cycle outcome in an in vitro fertilization program. Gynecol Endocrinol. 2001;15(3):234–8.

    Article  CAS  PubMed  Google Scholar 

  25. D’Angelo A, Amso N. Embryo freezing for preventing ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2007;3:CD002806.

    Google Scholar 

  26. Leitao VMS, Moroni RM, Seko LMD, Nastri CO, Martins WP. Cabergoline for the prevention of ovarian hyperstimulation syndrome: systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2013;101(3):664–675.e7.

    Article  PubMed  Google Scholar 

  27. Youssef MA, Al-Inany HG, Evers JL, Aboulghar M. Intra-venous fluids for the prevention of severe ovarian hyperstimulation syndrome. Cochrane Database Syst Rev. 2011;2:CD001302.

    Google Scholar 

  28. Itskovitz J, Boldes R, Levron J, Erlik Y, Kahana L, Brandes JM. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hormone agonist. Fertil Steril. 1991;56(2):213–20.

    Article  CAS  PubMed  Google Scholar 

  29. Youssef MAFM, Van der Veen F, Al-Inany HG, Mochtar MH, Griesinger G, Nagi Mohesen M, et al. Gonadotropin-releasing hormone agonist versus HCG for oocyte triggering in antagonist-assisted reproductive technology. Cochrane Database Syst Rev. 2014;10:CD008046.

    Google Scholar 

  30. Abbara A, Jayasena CN, Christopoulos G, Narayanaswamy S, Izzi-Engbeaya C, Nijher GMK, et al. Efficacy of kisspeptin-54 to trigger oocyte maturation in women at high risk of ovarian hyperstimulation syndrome (OHSS) during in vitro fertilization (IVF) therapy. J Clin Endocrinol Metab. 2015;100(9):3322–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Abdalla HI, Ah-Moye M, Brinsden P, Howe DL, Okonofua F, Craft I. The effect of the dose of human chorionic gonadotropin and the type of gonadotropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril. 1987;48(6):958–63.

    Article  CAS  PubMed  Google Scholar 

  32. Wikland M, Borg J, Forsberg AS, Jakobsson AH, Svalander P, Waldenström U. Human chorionic gonadotrophin self-administered by the subcutaneous route to induce oocyte maturation in an in-vitro fertilization and embryo transfer programme. Hum Reprod. 1995;10(7):1667–70.

    Article  CAS  PubMed  Google Scholar 

  33. Gonen Y, Balakier H, Powell W, Casper RF. Use of gonadotropin-releasing hormone agonist to trigger follicular maturation for in vitro fertilization. J Clin Endocrinol Metab. 1990;71(4):918–22.

    Article  CAS  PubMed  Google Scholar 

  34. Engmann L, DiLuigi A, Schmidt D, Nulsen J, Maier D, Benadiva C. The use of gonadotropin-releasing hormone (GnRH) agonist to induce oocyte maturation after cotreatment with GnRH antagonist in high-risk patients undergoing in vitro fertilization prevents the risk of ovarian hyperstimulation syndrome: a prospective randomized controlled study. Fertil Steril. 2008;89(1):84–91.

    Article  CAS  PubMed  Google Scholar 

  35. Chang FE, Beall SA, Cox JM, Richter KS, DeCherney AH, Levy MJ. Assessing the adequacy of gonadotropin-releasing hormone agonist leuprolide to trigger oocyte maturation and management of inadequate response. Fertil Steril. 2016;106(5):1093–1100.e3.

    Article  CAS  PubMed  Google Scholar 

  36. Honnma H, Hashiba Y, Asada Y, Endo T. Failure of triggering oocyte maturation with a GnRH agonist in polycystic ovary syndrome: two case reports. Eur J Obstet Gynecol Reprod Biol. 2011;157(2):239–40.

    Article  PubMed  Google Scholar 

  37. Kummer NE, Feinn RS, Griffin DW, Nulsen JC, Benadiva CA, Engmann LL. Predicting successful induction of oocyte maturation after gonadotropin-releasing hormone agonist (GnRHa) trigger. Hum Reprod. 2013;28(1):152–9.

    Article  CAS  PubMed  Google Scholar 

  38. Meyer L, Murphy LA, Gumer A, Reichman DE, Rosenwaks Z, Cholst IN. Risk factors for a suboptimal response to gonadotropin-releasing hormone agonist trigger during in vitro fertilization cycles. Fertil Steril. 2015;104(3):637–42.

    Article  CAS  PubMed  Google Scholar 

  39. Hoff JD, Quigley ME, Yen SSC. Hormonal dynamics at midcycle: a reevaluation. J Clin Endocrinol Metab. 1983;57(4):792–6.

    Article  CAS  PubMed  Google Scholar 

  40. Tapanainen JS, Lapolt PS, Perlas E, Hsueh AJ. Induction of ovarian follicle luteinization by recombinant follicle-stimulating hormone. Endocrinology. 1993;133(6):2875–80.

    Article  CAS  PubMed  Google Scholar 

  41. Zelinski-Wooten MB, Hutchison JS, Hess DL, Wolf DP, Stouffer RL. Follicle stimulating hormone alone supports follicle growth and oocyte development in gonadotrophin-releasing hormone antagonist-treated monkeys. Hum Reprod. 1995;10(7):1658–66.

    Article  CAS  PubMed  Google Scholar 

  42. Galway AB, Lapolt PS, Tsafriri A, Dargan CM, Boime I, Hsueh AJW. Recombinant follicle-stimulating hormone induces ovulation and tissue plasminogen activator expression in hypophysectomized rats. Endocrinology. 1990;127(6):3023–8.

    Article  CAS  PubMed  Google Scholar 

  43. Zelinski-Wooten MB, Hutchison JS, Hess DL, WoIf DP, Stouffer RL. A bolus of recombinant human follicle stimulating hormone at midcycle induces periovulatory events following multiple follicular development in macaques. Hum Reprod. 1998;13(3):554–60.

    Article  CAS  PubMed  Google Scholar 

  44. Rice VC, Zusmanis K, Malter H, Mitchell-Leef D. Pure FSH alone induces ovulation and subsequent pregnancy in the mouse resulting in fetal development. Life Sci. 1993;53(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  45. Wang XN, Greenwald GS. Human chorionic gonadotropin or human recombinant follicle-stimulating hormone (FSH)-induced ovulation and subsequent fertilization and early embryo development in hypophysectomized FSH-primed mice. Endocrinology. 1993;132(5):2009–16.

    Article  CAS  PubMed  Google Scholar 

  46. Lamb JD, Shen S, McCulloch C, Jalalian L, Cedars MI, Rosen MP. Follicle-stimulating hormone administered at the time of human chorionic gonadotropin trigger improves oocyte developmental competence in in vitro fertilization cycles: a randomized, double-blind, placebo-controlled trial. Fertil Steril. 2011;95(5):1655–60.

    Article  CAS  PubMed  Google Scholar 

  47. Papanikolaou EG, Pozzobon C, Kolibianakis EM, Camus M, Tournaye H, Fatemi HM, et al. Incidence and prediction of ovarian hyperstimulation syndrome in women undergoing gonadotropin-releasing hormone antagonist in vitro fertilization cycles. Fertil Steril. 2006;85(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  48. Rosen MP, Zamah AM, Shen S, Dobson AT, McCulloch CE, Rinaudo PF, et al. The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery. Reprod Biol Endocrinol. 2009;7:35.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Scott RT, Hofmann GE, Muasher SJ, Acosta AA, Kreiner DK, Rosenwaks Z. Correlation of follicular diameter with oocyte recovery and maturity at the time of transvaginal follicular aspiration. J In Vitro Fert Embryo Transf. 1989;6(2):73–5.

    Article  CAS  PubMed  Google Scholar 

  50. Veeck LL. The morphological assessment of human oocytes and early conception. In: Keel BA, Webste BW, editors. Handbook of the laboratory diagnosis and treatment of infertility. Boca Raton: CRC Press; 1990. p. 353–69.

    Google Scholar 

  51. Gardner DK, Schoolcraft W. In vitro culture of human blastocysts. In: Toward reproductive certainty: fertility and genetics beyond 1999: the plenary proceedings of the 11th World Congress on In Vitro Fertilization and Human Reproductive Genetics. Pearl River, NY:Parthenon; 1999. p. 378–88.

  52. Damewood MD, Shen W, Zacur HA, Schlaff WD, Rock JA, Wallach EE. Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril. 1989;52(3):398–400.

    Article  CAS  PubMed  Google Scholar 

  53. Bomsel-Helmreich O, Vu N, Huyen L, Durand-Gasselin I. Effects of varying doses of HCG on the evolution of preovulatory rabbit follicles and oocytes. Hum Reprod. 1989;4(6):636–42.

    Article  CAS  PubMed  Google Scholar 

  54. Zelinski-Wooten MB, Lanzendorf SE, Wolf DP, Chandrasekher YA, Stouffer RL. Titrating luteinizing hormone surge requirements for ovulatory changes in primate follicles. I. Oocyte maturation and corpus luteum function. J Clin Endocrinol Metab. 1991;73(3):577–83.

    Article  CAS  PubMed  Google Scholar 

  55. Zelinski-Wooten MB, Hutchison JS, Chandrasekher YA, Wolf DP, Stouffer RL. Administration of human luteinizing hormone (hLH) to macaques after follicular development: further titration of LH surge requirements for ovulatory changes in primate follicles. J Clin Endocrinol Metab. 1992;75(2):502–7.

    CAS  PubMed  Google Scholar 

  56. Chandrasekher YA, Hutchison JS, Zelinski-Wooten MB, Hess DL, Wolf DP, Stouffer RL. Initiation of periovulatory events in primate follicles using recombinant and native human luteinizing hormone to mimic the midcycle gonadotropin surge. J Clin Endocrinol Metab. 1994;79(1):298–306.

    CAS  PubMed  Google Scholar 

  57. Zelinski-Wooten MB, Hutchison JS, Trinchard-Lugan I, Hess DL, Wolf DP, Stouffer RL. Initiation of periovulatory events in gonadotrophin-stimulated macaques with varying doses of recombinant human chorionic gonadotrophin. Hum Reprod. 1997;12(9):1877–85.

    Article  CAS  PubMed  Google Scholar 

  58. Peluso JJ. Role of the amplitude of the gonadotropin surge in the rat. Fertil Steril. 1990;53(1):150–4.

    Article  CAS  PubMed  Google Scholar 

  59. Nargund G, Hutchison L, Scaramuzzi R, Campbell S. Low-dose HCG is useful in preventing OHSS in high-risk women without adversely affecting the outcome of IVF cycles. Reprod BioMed Online. 2007;14(6):682–5.

    Article  CAS  PubMed  Google Scholar 

  60. Kolibianakis EM, Papanikolaou EG, Tournaye H, Camus M, Van Steirteghem AC, Devroey P. Triggering final oocyte maturation using different doses of human chorionic gonadotropin: a randomized pilot study in patients with polycystic ovary syndrome treated with gonadotropin-releasing hormone antagonists and recombinant follicle-stimulating horm. Fertil Steril. 2007;88(5):1382–8.

    Article  CAS  PubMed  Google Scholar 

  61. Smith B, Porter R, Ahuja K, Craft I. Ultrasonic assessment of endometrial changes in stimulated cycles in an in vitro fertilization and embryo transfer program. J In Vitro Fert Embryo Transf. 1984;1(4):233–8.

    Article  CAS  PubMed  Google Scholar 

  62. Ahuja KK, Smith W, Tucker M, Craft I. Successful pregnancies from the transfer of pronucleate embryos in an outpatient in vitro fertilization program. Fertil Steril. 1985;44(2):181–4.

    Article  CAS  PubMed  Google Scholar 

  63. Chen X, Chen SL, He YX, Ye DS. Minimum dose of hCG to trigger final oocyte maturation and prevent OHSS in a long GnRHa protocol. J Huazhong Univ Sci Technol Med Sci. 2013;33(1):133–6.

    Article  PubMed  Google Scholar 

  64. Işik AZ, Vicdan K. Borderline form of empty follicle syndrome: is it really an entity? Eur J Obstet Gynecol Reprod Biol. 2000;88(2):213–5.

    Article  PubMed  Google Scholar 

  65. Andersen CY, Leonardsen L, Ulloa-Aguirre A, Barrios-De-Tomasi J, Moore L, Byskov AG. FSH-induced resumption of meiosis in mouse oocytes: effect of different isoforms. Mol Hum Reprod. 1999;5(8):726–31.

    Article  CAS  Google Scholar 

  66. Yding AC. Effect of FSH and its different isoforms on maturation of oocytes from pre-ovulatory follicles. Reprod BioMed Online. 2002;5(3):232–9.

    Article  Google Scholar 

  67. Strickland S, Beers WH. Studies on the role of plasminogen activator in ovulation. In vitro response of granulosa cells to gonadotropins, cyclic nucleotides, and prostaglandins. J Biol Chem. 1976;251(18):5694–702.

    CAS  PubMed  Google Scholar 

  68. Bianchi V, Dal Prato L, Maccolini A, Mazzone S, Borini A. Inadvertent recombinant human follicle stimulating hormone bolus instead of human chorionic gonadotrophin leads to the retrieval of competent oocytes in IVF program. Fertil Steril. 2009;92(5):1747.

    Article  PubMed  Google Scholar 

  69. Humaidan P, Kol S, Papanikolaou EG. GnRH agonist for triggering of final oocyte maturation: time for a change of practice? Hum Reprod Update. 2011;17(4):510–24.

    Article  CAS  PubMed  Google Scholar 

  70. Griesinger G, Diedrich K, Devroey P, Kolibianakis EM. GnRH agonist for triggering final oocyte maturation in the GnRH antagonist ovarian hyperstimulation protocol: a systematic review and meta-analysis. Hum Reprod Update. 2006;12(2):159–68.

    Article  CAS  PubMed  Google Scholar 

  71. Bodri D, Guillén JJ, Trullenque M, Schwenn K, Esteve C, Coll O. Early ovarian hyperstimulation syndrome is completely prevented by gonadotropin releasing hormone agonist triggering in high-risk oocyte donor cycles: a prospective, luteal-phase follow-up study. Fertil Steril. 2010;93(7):2418–20.

    Article  CAS  PubMed  Google Scholar 

  72. Devroey P, Polyzos NP, Blockeel C. An OHSS-free clinic by segmentation of IVF treatment. Hum Reprod. 2011;26(10):2593–7.

    Article  PubMed  Google Scholar 

  73. Kol S, Lewit N, Itskovitz-Eldor J. Ovarian hyperstimulation: effects of GnRH analogues. Ovarian hyperstimulation syndrome after using gonadotrophin-releasing hormone analogue as a trigger of ovulation: causes and implications. Hum Reprod. 1996;11(6):1143–4.

    Article  CAS  PubMed  Google Scholar 

  74. Gurbuz AS, Gode F, Ozcimen N, Isik AZ. Gonadotrophin-releasing hormone agonist trigger and freeze-all strategy does not prevent severe ovarian hyperstimulation syndrome: a report of three cases. Reprod BioMed Online. 2014;29(5):541–4.

    Article  PubMed  Google Scholar 

  75. Fatemi HM, Popovic-Todorovic B, Humaidan P, Kol S, Banker M, Devroey P, et al. Severe ovarian hyperstimulation syndrome after gonadotropin-releasing hormone (GnRH) agonist trigger and “freeze-all” approach in GnRH antagonist protocol. Fertil Steril. 2014;101(4):1008–11.

    Article  CAS  PubMed  Google Scholar 

  76. Imoedemhe DA, Sigue AB, Pacpaco EL, Olazo AB. Stimulation of endogenous surge of luteinizing hormone with gonadotropin-releasing hormone analog after ovarian stimulation for in vitro fertilization. Fertil Steril. 1991;55(2):328–32.

    Article  CAS  PubMed  Google Scholar 

  77. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, Hudson C. Efficacy of induced luteinizing hormone surge after “trigger” with gonadotropin-releasing hormone agonist. Fertil Steril. 2011;95(2):826–8.

    Article  CAS  PubMed  Google Scholar 

  78. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Thomas S. Gonadotropin-releasing hormone agonist combined with a reduced dose of human chorionic gonadotropin for final oocyte maturation in fresh autologous cycles of in vitro fertilization. Fertil Steril. 2008;90(1):231–3.

    Article  CAS  PubMed  Google Scholar 

  79. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C. Comparison of “triggers” using leuprolide acetate alone or in combination with low-dose human chorionic gonadotropin. Fertil Steril. 2011;95(8):2715–7.

    Article  CAS  PubMed  Google Scholar 

  80. O’Neill KE, Senapati S, Maina I, Gracia C, Dokras A. GnRH agonist with low-dose hCG (dual trigger) is associated with higher risk of severe ovarian hyperstimulation syndrome compared to GnRH agonist alone. J Assist Reprod Genet. 2016;33(9):1175–84.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Schmidt DW, Maier DB, Nulsen JC, Benadiva CA. Reducing the dose of human chorionic gonadotropin in high responders does not affect the outcomes of in vitro fertilization. Fertil Steril. 2004;82(4):841–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanett Anaya.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

The original version of this article was revised: The middle initial of Douglas A. Mata was omitted.

A correction to this article is available online at https://doi.org/10.1007/s10815-017-1093-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anaya, Y., Mata, D.A., Letourneau, J. et al. A novel oocyte maturation trigger using 1500 IU of human chorionic gonadotropin plus 450 IU of follicle-stimulating hormone may decrease ovarian hyperstimulation syndrome across all in vitro fertilization stimulation protocols. J Assist Reprod Genet 35, 297–307 (2018). https://doi.org/10.1007/s10815-017-1074-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-017-1074-4

Keywords

Navigation