Skip to main content

Advertisement

Log in

Repeated ovarian stimulation does not affect the expression level of proteins involved in cell cycle control in mouse ovaries and fallopian tubes

  • Gonadal Physiology and Disease
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

To understand if repeated cycles (2–4 rounds) of gonadotropin stimulation could affect intracellular localization/content of proteins controlling cell cycle progression in mouse fallopian tubes (FT) and ovaries.

Methods

FT and ovaries of estrous mice (control) and of stimulated mice were analyzed to detect Oct-3/4, Sox-2, p53, β-catenin, pAKT and cyclin D1 localization/content. Spindles and chromosome alignment were analyzed in ovulated oocytes.

Results

After round 4, FT and ovaries of control and stimulated groups showed no differences in Oct-3/4, Sox-2 and β-catenin localization nor in Oct-3/4, Sox-2, p53, β-catenin and pAKT contents. Cyclin D1 level increased significantly in FT of treated mice. Oocytes number decreased meanwhile frequency of abnormal meiotic spindles increased with treatments.

Conclusions

Repetitive stimulations affected oocyte spindle morphology but did not induce changes in a set of proteins involved in cell cycle progression, usually altered in ovarian cancer. The significant increase of cyclin D1 in the FT requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lerner-Geva L, Rabonovici J, Lunenfeld B. Ovarian stimulation: is there a long-term risk for ovarian, breast and endometrial cancer? Womens Health. 2010;6:831–9.

    CAS  Google Scholar 

  2. Van Blerkom J, Davis P. Differential effects of repeated ovarian stimulation on cytoplasmic and spindle organization in metaphase II mouse oocytes matured in vivo and in vitro. Hum Reprod. 2001;16:757–64.

    Article  PubMed  Google Scholar 

  3. Luk J, Arici A. Does the ovarian reserve decrease from repeated ovulation stimulations? Curr Opin Obstet Gynecol. 2010;22:177–82.

    Article  PubMed  Google Scholar 

  4. Gadducci A, Guerrieri ME, Genazzani AR. Fertility drug use and risk of ovarian tumors: a debated clinical challenge. Gynecol Endocrinol. 2013;29:30–5.

    Article  PubMed  Google Scholar 

  5. Sanner K, Conner P, Bergfeldt K, Dickman P, Sundfeldt K, Bergh T, et al. Ovarian epithelial neoplasia after hormonal infertility treatment: long-term follow-up of a historical cohort in Sweden. Fertil Steril. 2009;91:1152–8.

    Google Scholar 

  6. Källén B, Finnström O, Lindam A, Nilsson E, Nygren KG, Olausson PO. Malignancies among women who gave birth after in vitro fertilization. Hum Reprod. 2011;26:253–8.

    Article  PubMed  Google Scholar 

  7. Vlahos NF, Economopoulos KP, Creatsas G. Fertility drugs and ovarian cancer risk: a critical review of the literature. Ann N Y Acad Sci. 2010;1205:214–9.

    Article  PubMed  Google Scholar 

  8. Britt K, Short R. The plight of nuns: hazards of nulliparity. Lancet. 2012;379:2322–3.

    Article  PubMed  Google Scholar 

  9. Jensen A, Sharif H, Frederiksen K, Kjaer SK. Use of fertility drugs and risk of ovarian cancer: Danish population based cohort study. BMJ. 2009;338:b249.

    Article  PubMed Central  PubMed  Google Scholar 

  10. van Leeuwen FE, Klip H, Mooji TM, van de Swaluw AM, Lambalk CB, Kortman M, et al. Risk of borderline and invasive ovarian tumours after ovarian stimulation for in vitro fertilization in a large Dutch cohort. Hum Reprod. 2011;26:3456–65.

    Google Scholar 

  11. Twombly R. Too early to determine cancer risk from infertility treatments. J Natl Cancer Inst. 2012;104:501–2.

    Article  PubMed  Google Scholar 

  12. American Cancer Society. Cancer facts & figures 2013. Atlanta: American Cancer Society; 2013.

    Google Scholar 

  13. Romero I, Bast Jr RC. Minireview: human ovarian cancer: biology, current management, and paths to personaliziong therapy. Endocrinology. 2012;153:1593–602.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Fathalla MF. Incessant ovulation – a factor in ovarian neoplasia? Lancet. 1971;2:163.

    Article  CAS  PubMed  Google Scholar 

  15. Vanderhyden BC. Loss of ovarian function and the risk of ovarian cancer. Cell Tissue Res. 2005;322:117–24.

    Article  PubMed  Google Scholar 

  16. Kurman RJ, Shih IM. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010;34:433–43.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Kim J, Coffey DM, Creighton CJ, Yu Z, Hawkins SM, Matzuk MM. High-grade serous ovarian cancer arises from fallopian tube in a mouse model. Proc Natl Acad Sci U S A. 2012;109:3921–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cibula D, Widschwendter M, Màjek O, Dusek L. Tubal ligation and the risk of ovarian cancer: review and meta-analysis. Hum Reprod Update. 2011;17:55–67.

    Article  CAS  PubMed  Google Scholar 

  19. Marquez RT, Baggerly KA, Patterson AP, et al. Patterns of gene expression in different histotypes of epithelial ovarian cancer correlate with those in normal fallopian tube, endometrium, and colon. Clin Cancer Res. 2005;11:6116–26.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Li YL, Zhou CY, Hu YT, Chen HZ. Expression of octamer-4 in serous and mucinous ovarian carcinoma. J Clin Pathol. 2010;63:879–83.

    Article  PubMed  Google Scholar 

  21. Ye F, Li Y, Hu Y, Zhou C, Hu Y, Chen H. Expression of Sox2 in human ovarian epithelial carcinoma. J Cancer Res Clin Oncol. 2011;137:131–7.

    Article  CAS  PubMed  Google Scholar 

  22. Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372–6.

    Article  CAS  PubMed  Google Scholar 

  23. Liu K, Lin B, Zhao M, Yang X, Chen M, Gao A, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cell Signal. 2013;25:1264–71.

    Article  CAS  PubMed  Google Scholar 

  24. Sung MT, Jones TD, Beck SD, Foster RS, Cheng L. OCT4 is superior to CD30 in the diagnosis of metastatic embryonal carcinomas after chemotherapy. Hum Pathol. 2006;37:662–7.

    Article  CAS  PubMed  Google Scholar 

  25. Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol. 2007;31:836–45.

    Article  PubMed  Google Scholar 

  26. Rossi G, Macchiarelli G, Palmerini MG, Canipari R, Cecconi S. Meiotic spindle configuration is differentially influenced by FSH and epidermal growth factor during in vitro maturation of mouse oocytes. Hum Reprod. 2006;21:1765–70.

    Article  CAS  PubMed  Google Scholar 

  27. Combelles CMH, Albertini DF. Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse. Biol Reprod. 2003;68:812–21.

    Article  CAS  PubMed  Google Scholar 

  28. Matoba R, Niwa H, Masui S, Ohtsuka S, CArter MG, Sharov AA, et al. Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS One. 2006;20:1–e26.

    Google Scholar 

  29. Jeong CH, Cho YY, Kim MO, et al. Phosphorylation of Sox2 cooperates in reprogramming to pluripotent stem cells. Stem Cells. 2010;28:2141–50.

    Article  CAS  PubMed  Google Scholar 

  30. Masui S, Nakatabe Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.

    Google Scholar 

  31. Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, et al. SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol. 2011;3:230–8.

    Google Scholar 

  32. Papapetrou EP, Tomishima MJ, Chambers SM, Mica Y, Reed E, Menon J, et al. Stoichiometric and temporal requirements of Oct4, Sox2, Klf4, and c-Myc expression for efficient human iPSC induction and differentiation. Proc Natl Acad Sci U S A. 2009;106:12759–64.

    Google Scholar 

  33. Gao Z, Cox JL, Gilmore JM, Ormsbee BD, Mallann SK, Washburn MP, et al. Determination of protein interactome of transcription factor Sox2 in embryonic stem cells engineered for inducible expression of four reprogramming factors. J Biol Chem. 2012;287:11384–97.

    Google Scholar 

  34. Cecconi S, Mauro A, Cellini V, Patacchiola F. The role of Akt signalling in the mammalian ovary. Int J Dev Biol. 2012;56:809–17.

    Article  CAS  PubMed  Google Scholar 

  35. Saifo MS, Rempinski Jr DR, Rustum YM, Azrak RG. Targeting the oncogenic protein beta-catenin to enhance chemotherapy outcome against solid human cancers. Mol Cancer. 2010;9:310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Mazzoletti M, Broggini M. PI3K/AKT/mTOR inhibitors in ovarian cancer. Curr Med Chem. 2010;17:4433–47.

    Article  CAS  PubMed  Google Scholar 

  37. Li W, Cai JH, Zhang J, Tang YX, Wan L. Effects of cyclooxygenase inhibitors in combination with taxol on expression of cyclin d1 and ki-67 in a xenograft model of ovarian carcinoma. Int J Mol Sci. 2012;13:9741–53.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Lalwani N, Shanbhogue AK, Vikram R, Nagar A, Jagirdar J, Prasad SR. Current update on borderline ovarian neoplasms. AJR Am J Roentgenol. 2010;194:330–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Italian Ministry of Education, University and Research to S.C.and G.C. (ex 60 %), and by FARI 2012, “Sapienza” University of Rome to R.C.

The study has been performed in the framework of the “Research Centre for Molecular Diagnostics and Advanced Therapies”. The authors wish to thank the “Abruzzo earthquake relief fund” (Toronto, Ontario) that supported in part this research with the purchase of confocal microscope Leica TCS SP5 II (Leica, Germany).

S.C. dedicates this paper in the memory of Daniela Lombardi (1956–2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Cecconi.

Additional information

Capsule

In mouse ovary and fallopian tubes, four rounds of gonadotropin stimulation did not modify cell cycle proteins contents, usually altered in ovarian cancer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Luigi, G., Rossi, G., Castellucci, A. et al. Repeated ovarian stimulation does not affect the expression level of proteins involved in cell cycle control in mouse ovaries and fallopian tubes. J Assist Reprod Genet 31, 717–724 (2014). https://doi.org/10.1007/s10815-014-0198-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-014-0198-z

Keywords

Navigation