Skip to main content
Log in

Models for Estimating the Physical Properties of Paddy Soil Using Visible and Near Infrared Reflectance Spectroscopy

  • Published:
Journal of Applied Spectroscopy Aims and scope

A fast and convenient soil analytical technique is needed for soil quality assessment and precision soil management. The main objective of this study was to evaluate the ability of visible (Vis) and near-infrared (NIR) refl ectance spectroscopy to predict paddy soil properties in a typical Malaysian paddy fi eld. To assess the utility of spectroscopy for soil physical characteristics (bulk density, moisture content, clay, silt and sand) prediction, 118 soil samples were used for laboratory analysis and optical measurement in the Vis-NIR region using an analytical spectral device (ASD) FieldSpec spectroradiometer (350–2500 nm). The Savitzky–Golay algorithm and stepwise multiple linear regression (SMLR) were then applied to preprocess, model, and predict the properties on the basis of their spectral refl ectance within the Vis-NIR range. One-third of the samples (40 samples) were withheld for validation purposes. The study revealed that Vis and NIR spectroscopy calibration models for all the measured soil physical characteristics provided a good fi t (R2 > 0.78); hence Vis and NIR (specifi cally NIR refl ectance) can be considered to be a reliable tool to assess soil physical properties of Malaysian paddy fi elds. The results of this study could contribute signifi cantly to developing site-specifi c management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Viscarra Rossel and A. B. McBratney, Aust. J. Exp. Agr., 38, 765–775 (1998).

    Article  Google Scholar 

  2. L. J. Janik, R. H. Merry, and J. O. Skjemstad, Aust. J. Exp. Agr., 38, No. 7, 681–696 (1998).

    Article  Google Scholar 

  3. G. D. Batten, Aust. J. Exp. Agr., 38, 697–706 (1998).

    Article  Google Scholar 

  4. K. Islam, B. Singh, and A. McBratney, Aust. J. Soil Res., 41, 1101–1114 (2003).

    Article  Google Scholar 

  5. E. Velasquez, P. Lavelle, E. Barrios, R. Joffre, and F. Reversat, Soil Biol. Biochem., 37, 889–898 (2005).

    Article  Google Scholar 

  6. D. J. Brown, M. G. Walsh, M. D. Mays, and T. G. Reinsch, Geoderma, 129, No. 3–4, 215–267 (2005).

    Google Scholar 

  7. D. Cozzolino and A. Morón, Soil Till. Res., 85, No. 1–2, 78–85 (2006).

    Article  Google Scholar 

  8. S. Shibusawa, S. W. Imade Anom, S. Sato, A. Sasao, and S. Hirako, Proc. 3rd Europ. Conf. Prec. Agriculture, Agro Montpellier, France, 497–508 (2001).

  9. A. M. Mouazen, M. R. Maleki, J. De Baerdemaeker, and H. Ramon, Soil Till. Res., 93, 13–27 (2007).

    Article  Google Scholar 

  10. H. Aichi, Y. Fouad, C. Walter, R. A. Viscarra Rossel, C. Zohra Lili, and S. Mustafa, Biosyst. Eng., 104, 442–446 (2009).

    Article  Google Scholar 

  11. S. G. Bajwa, A. R. Mishra, and R. J. Norman, Precision Agric., 11, No. 5, 488–506 (2010).

    Article  Google Scholar 

  12. G. R. Blake and K. H. Hartge. In: Methods of Soil Analysis. Ed. A. Klute, Part 1, Agronomy No. 9, American Society of Agronomy, Madison, WI, 363–375 (1986).

    Google Scholar 

  13. W. H. Gardner. In: Methods of Soil Analysis. Ed. A. Klute, Part 1. Agronomy No. 9, American Society of Agronomy, Madison, WI, 493–544 (1986).

    Google Scholar 

  14. P. R. Day. In: Methods of Soil Analysis. Ed. C. A. Black, Agronomy No. 9, Part 1. American Society of Agronomy, Madison, WI, 545–567 (1965).

    Google Scholar 

  15. A. J. Green. In: Manual on Soil Sampling and Methods of Analysis. Ed. McKeague, Canadian Society of Soil Science, Ottawa, 4–29 (1981).

  16. Analytical Spectral Devices. FieldSpecTM User’s guide. Analytical spectral devices Inc., Boulder, CO (2005).

    Google Scholar 

  17. H. R. Xu, H. J. Wang, K. Huang, Y. B. Ying, C. Yang, H. Qian, and J. Hu, Spectrosc. Spect. Anal., 28, No. 11, 2523–2526 (2008).

    Google Scholar 

  18. C. H. Spiegelman, M. J. McShane, M. J. Goetz, M. Motamedi, Q. L. Yue, and G. L. Cote, Anal. Chem., 70, 35–44 (1998).

    Article  Google Scholar 

  19. A. Savitzky and M. J. E. Golay, Anal. Chem., 36, 1627 (1964).

    Article  ADS  Google Scholar 

  20. M. R. Ehsani, S. K. Upadhyaya, W. R. Fawcett, L. V. Protsailo, and D. Slaughter, Am. J. Agric. Eng., 44, No. 6, 1931–1940 (2001).

    Google Scholar 

  21. P. Williams, Near-infrared Technology – Getting the Best out of Light. PDK Projects, Nanaimo, Canada (2003).

    Google Scholar 

  22. C. W. Chang, D. A. Laird, M. J. Mausbach, R. Charles, and Jr. Hurburgh, Soil Sci. Soc. Am. J., 65, 480–490 (2001).

    Article  Google Scholar 

  23. S. Haiyan, H. Yong, and G. Annia, Proc. IEEE Eng. Med. Biol. 27 th Ann. Conf. Shanghai, China, 3149–3152 (2005).

  24. L. K. Sørensen and S. Dalsgaard, Soil Sci. Soc. Am. J., 69, 159–167 (2005).

    Article  Google Scholar 

  25. R. A. Viscarra Rossel, D. J. J. Walvoort, A. B. McBratney, L. J. Janik, and J. O. Skjemstad, Geoderma, 131, 59–75 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gholizadeh.

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 81, No. 3, p. 487, May–June, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholizadeh, A., Amin, M.S.M., Borůvka, L. et al. Models for Estimating the Physical Properties of Paddy Soil Using Visible and Near Infrared Reflectance Spectroscopy. J Appl Spectrosc 81, 534–540 (2014). https://doi.org/10.1007/s10812-014-9966-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-014-9966-x

Keywords

Navigation