Skip to main content
Log in

Complete organellar genomes and molecular phylogeny of Hypnea cervicornis (Gigartinales, Florideophyceae) from China

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Hypnea cervicornis J. Agardh (Gigartinales, Florideophyceae) is a commercially important carrageenan producing seaweed. Currently, there are no organellar genomes of Hypnea species available in public databases. Here, we report the complete organellar genomes of H. cervicornis using next-generation sequencing technology. The mitochondrial genome has a circular mapping organization with a total length of 25,060 bp and consists of 50 genes (24 protein-coding, 2 rRNA, and 24 tRNA). The plastid genome is also a circular molecule and is 176,446 bp in length and includes 230 genes (194 protein-coding, 3 rRNA, 30 tRNA, 1 tmRNA and 2 misc_RNA). Colinear analysis show that the organellar genomes in the Gigartinales are conserved, except for the inversion of two genes (trnY and trnR) in the mitochondrial genome and a 12.5-kb rearrangement in the plastid genome. One stem-loop structure at the intergenic regions between trnS2 and trnA, plus one short hairpin structure between cob and trnL2 are detected in the mitochondrial genome of H. cervicornis. The Ka/Ks analysis reveal that values for most of the protein-coding genes in organellar genomes of H. cervicornis are below one, reflecting the importance of those genes. Phylogenetic relationships based on shared protein-coding genes from the organellar genomes of Rhodophyta are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bitencourt Fda S, Figueiredo JG, Mota MR, Bezerra CC, Silvestre PP, Vale MR, Nascimento KS, Sampaio AH, Nagano CS, Saker-Sampaio S, Farias WR, Cavada BS, Assreuy AM, de Alencar NM (2008) Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn Schmiedebergs Arch Pharmacol 377:139–148

    Article  PubMed  Google Scholar 

  • Boo GH, Hughey JR, Miller KA, Boo SM (2016) Mitogenomes from type specimens, a genotyping tool for morphologically simple species: ten genomes of agar-producing red algae. Sci Rep 6:35337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao M, Bi GQ, Mao YX, Li GY, Kong FN (2018) The first plastid genome of a filamentous taxon ’Bangia’ sp. OUCPT-01 in the Bangiales. Sci Rep. 8:10688

    Article  PubMed  PubMed Central  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    Article  CAS  PubMed  Google Scholar 

  • Chang DD, Clayton DA (1986) Identification of primary transcriptional start sites of mouse mitochondrial DNA: accurate in vitro initiation of both heavy- and light-strand transcriptions. Mol Cell Biol 6:1446–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WZ, Zhong ZH, Jin YL, Huang ZJ (2014) Effects of light intensity, temperature and salinity on growth and biochemical constituents of Hypnea cervicornis. South China Fisheries Science 10:48–53 (in Chinese with English abstract)

    Google Scholar 

  • Clayton DA (1982) Replication of animal mitochondrial DNA. Cell 28:693–705

    Article  CAS  PubMed  Google Scholar 

  • Darling AE, Tritt A, Eisen JA, Facciotti MT (2011) Mauve assembly metrics. Bioinformatics 27:2756–2757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    Article  CAS  PubMed  Google Scholar 

  • de Jesus PB, Nauer F, Lyra GM, Cassano V, Oliveira MC, Nunes JM, Schnadelbach AS (2016) Species-delimitation and phylogenetic analyses of some cosmopolitan species of Hypnea (Rhodophyta) reveal synonyms and misapplied names to H. cervicornis, including a new species from Brazil J Phycol 52:774–792

    Article  PubMed  Google Scholar 

  • Dierckxsens N, Mardulyn P, Smits G (2017) NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res 45:e18

    PubMed  Google Scholar 

  • Dong WP, Xu C, Cheng T, Zhou SL (2013) Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales. PLoS ONE 8:e77965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du QW, Bi GQ, Mao YX, Sui ZH (2016) The complete chloroplast genome of Gracilariopsis lemaneiformis (Rhodophyta) gives new insight into the evolution of family Gracilariaceae. J Phycol 52:441–450

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wu CI (2003) Sequence divergence, functional constraint, and selection in protein evolution. Annu Rev Genomics Hum Genet 4:213–235

    Article  CAS  PubMed  Google Scholar 

  • Galperin MY (2001) Conserved “hypothetical” proteins: new hints and new puzzles. Comp Funct Genomics 2:14–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galperin MY, Koonin EV (2004) “Conserved hypothetical” proteins: prioritization of targets for experimental study. Nucleic Acids Res 32:5452–5463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao L, Yi X, Yang YX, Su YJ, Wang T (2009) Complete chloroplast genome sequence of a tree fern Alsophila spinulosa: insights into evolutionary changes in fern chloroplast genomes. BMC Evol Biol 9:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Geraldino PJL, Yang EC, Boo SM (2006) Morphology and molecular phylogeny of Hypnea flexicaulis (Gigartinales, Rhodophyta) from Korea. Algae 21:417–423

    Article  Google Scholar 

  • Geraldino PJL, Yang EC, Kim MS, Boo SM (2009) Systematics of Hypnea asiatica sp. nov. (Hypneaceae, Rhodophyta) based on morphology and nrDNA SSU, plastid rbcL, and mitochondrial cox1. Taxon 58:606–616

    Article  Google Scholar 

  • Geraldino PJL, Riosmena-Rodriguez R, Liao LM, Boo SM (2010) Phylogenetic relationships within the genus Hypnea (Gigartinales, Rhodophyta), with a description of Hypnea caespitosa sp. nov. J Phycol 46:336–345

    Article  CAS  Google Scholar 

  • Geraldino PJL, Boo GH, Boo SM (2015) Genetic variability and biogeography of the widespread red alga Hypnea flexicaulis (Gigartinales, Rhodophyta) based on rbcL and cox1 sequences. Bot Mar 58:167–174

    Article  CAS  Google Scholar 

  • Golderer G, Dlaska M, Grobner P, Piendl W (1995) TTG serves as an initiation codon for the ribosomal protein MvaS7 from the Archaeon Methanococcus vannielii. J Bacteriol 177:5994–5996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greiner S, Lehwark P, Bock R (2019) Organellar Genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucl Acids Res 47:W59–W64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guiry MD, Guiry GM (2021) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org; searched on 10 September 2021

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hartnell College Genomics Group, Aguilar A, Ahumada TJ, Amezcua Moreno N, Bohn J et al (2020) The complete mitochondrial and plastid genomes of the invasive marine red alga Caulacanthus okamurae (Caulacanthaceae, Rhodophyta) from Moss Landing, California, USA. Mitochondrial DNA B Resour 5:2067–2069

    Article  PubMed Central  Google Scholar 

  • Heather JM, Chain B (2016) The sequence of sequencers: the history of sequencing DNA. Genomics 107:1–8

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) Mrbayes: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Hughey JR, Silva PC, Hommersand MH (2001) Solving taxonomic and nomenclatural problems in Pacific Gigartinaceae (Rhodophyta) using DNA from type material. J Phycol 37:1091–1109

    Article  CAS  Google Scholar 

  • Hughey JR, Leister GL, Gabrielson PW, Hommersand MH (2020) Sarcopeltis gen. nov. (Gigartinaceae, Rhodophyta), with S. skottsbergii comb. nov. from southern South America and S. antarctica sp. Phytotaxa 468:75–88

    Article  Google Scholar 

  • Janouškovec J, Liu SL, Martone PT, Carré W, Leblanc C, Collén J, Keeling PJ (2013) Evolution of red algal plastid genomes: ancient architectures, introns, horizontal gene transfer, and taxonomic utility of plastid markers. PLoS ONE 8:e59001

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Yang EC, Boo SM, Yoon HS (2014) Complete mitochondrial genome of the marine red alga Grateloupia angusta (Halymeniales). Mitochondrial DNA 25:269–270

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Corguillé G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253

    Article  PubMed  PubMed Central  Google Scholar 

  • Leblanc C, Boyen C, Richard O, Bonnard G, Grienenberger JM, Kloareg B (1995) Complete sequence of the mitochondrial DNA of the rhodophyte Chondrus crispus (Gigartinales). Gene content and genome organization. J Mol Biol 250:484–495

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu N, Wang XM, Tang XM, Zhang L, Meinita MDN, Wang GL, Yin HX, Jin YM, Wang HY, Liu C, Chi S, Liu T, Zhang J (2018) Comparative genomics and systematics of Betaphycus, Eucheuma, and Kappaphycus (Solieriaceae: Rhodophyta) based on mitochondrial genome. J Appl Phycol 30:3435–3443

  • Li RR, Jia XL, Zhang J, Jia SG, Liu T, Qu JY, Wang XM (2021) The complete plastid genomes of seven Sargassaceae species and their phylogenetic analysis. Front Plant Sci 12:747036

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu N, Zhang L, Tang XM, Wang XM, Meinita NMD, Wang GL, Chen WZ, Liu T (2019) Complete plastid genome of Kappaphycus alvarezii: insights of large-scale rearrangements among Florideophyceae plastid genomes. J Appl Phycol 31:3997–4005

    Article  CAS  Google Scholar 

  • Liu F (2001) Studies on the Mechansim of Extracting High Gelation Property Carrageenan from Hypnea. Dissertation, South China University of Technology (In Chinese with English abstract)

  • Luo RB, Liu BH, Xie YL, Li ZY, Huang WH, Yuan JY, He GZ, Chen YX, Pan Q, Liu YJ, Tang JB, Wu GX, Zhang H, Shi YJ, Liu Y, Yu C, Wang B, Lu Y, Han CL, Cheung DW, Yiu SM, Peng SL, Zhu XQ, Liu GM, Liao XK, Li YR, Yang HM, Wang J, Lam TW, Wang J (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng C, Zhang HH, Chen YC (2008) Sequencing and analysis of mitochondrial genome of Chinese Grey Wolf (Canis lupus chanco). Chin J Biochem Mol Biol 24:1170–1176 (In Chinese with English abstract)

    CAS  Google Scholar 

  • Miguel TBAR, Schmidt EC, Bouzon ZL, Nascimento FEP, Cunha MD, Pireda SF, Nascimento KS, Nagano CS, Saker-Sampaio S, Cavada BS, Miguel EC, Sampaio AH (2014) Morphology, ultrastructure and immunocytochemistry of Hypnea cervicornis and Hypnea musciformis- (Hypneaceae, Rhodophyta) from the coastal waters of Ceará, Brazil. J Microsc Ultrastruct 2:104–116

    Article  Google Scholar 

  • Mshigeni KE, Chapman DJ (1994) Hypnea (Gigartinales, Rhodophyta). Biology of economic algae. SPB Academic Publishing, The Hague, pp 245–281

    Google Scholar 

  • Nauer F, Guimarães NR, Cassano V, Yokoya NS, Oliveira MC (2014) Hypneaspecies (Gigartinales, Rhodophyta) from the southeastern coast of Brazil based on molecular studies complemented with morphological analyses, including descriptions of Hypnea edeniana sp. nov. and H. flava sp. nov. Eur J Phycol 49:550–5753

    Article  Google Scholar 

  • Nauer F, Jesus PB, Cassano V, Nunes JMC, Schnadelbach AS, Oliveira MC (2019) A taxonomic review of the genus Hypnea (Gigartinales, Rhodophyta) in Brazil based on DNA barcode and morphology. Braz J Bot 42:561–574

    Article  Google Scholar 

  • Price JH, John DM, Lawson GW (1992) Seaweeds of the western coast of tropical Africa and adjacent islands: a critical assessment. IV. Rhodophyta (Florideae) 3. Genera H-K. Bull Br Mus Nat Hist Bot 22:123–146

    Google Scholar 

  • Rambaut A (2016) FigTree v. 1.4.3. Available: http://tree.bio.ed.ac.uk/software/figtree/

  • Raubeson LA, Jansen RK (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255:1697–1699

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro ALNL, Tesima KE, Souza JMC, Yokoya NS (2013) Effects of nitrogen and phosphorus availabilities on growth, pigment, and protein contents in Hypnea cervicornis J. Agardh (Gigartinales, Rhodophyta). J Appl Phycol 25:1151–1157

    Article  CAS  Google Scholar 

  • Roper JM, Hansen SK, Wolf PG, Karol KG, Mandoli DF, Everett KDE, Kuehl J, Boore JL (2007) The complete plastid genome sequence of Angiopteris evecta (G. Forst.) Hoffm. (Marattiaceae). Am Fern J 97:95–106

    Article  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Philos Trans R Soc Lond B 360:1879–1888

    Article  CAS  Google Scholar 

  • Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33:W686–W689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sissini MN, Navarrete-Fernández TM, Murray EMC, Freese JM, Gentilhomme AS, Huber SR, Mumford TF, Hughey JR (2016) Mitochondrial and plastid genome analysis of the heteromorphic red alga Mastocarpus papillatus (C. Agardh) Kützing (Phyllophoraceae, Rhodophyta) reveals two characteristic florideophyte organellar genomes. Mitochondrial DNA B Resour 1:676–677

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Sun XY, Luo D, Zhao C, Li W, Liu T (2011) DNA extraction and PCR analysis of five kinds of large seaweed under different preservation conditions. Mol Plant Breed 9:1680–1691 (in Chinese with English abstract)

    Google Scholar 

  • Tablizo FA, Lluisma AO (2014) The mitochondrial genome of the red alga Kappaphycus striatus (“Green Sacol” variety): complete nucleotide sequence, genome structure and organization, and comparative analysis. Mar Genomics 18:155–161

    Article  PubMed  Google Scholar 

  • Wang DP, Zhang YB, Zhang Z, Zhu J, Yu J (2010) KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies. Genom Proteom Bioinform 8:77–80

    Article  CAS  Google Scholar 

  • Wang L, Mao YX, Kong FN, Li GY, Ma F, Zhang BL, Sun PP, Bi GQ, Zhang FF, Xue HF, Cao M (2013a) Complete sequence and analysis of plastid genomes of two economically important red algae: Pyropia haitanensis and Pyropia yezoensis. PLoS ONE 8:e65902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Shao ZR, Fu WD, Yao JT, Hu QP, Duan DL (2013b) Chloroplast genome of one brown seaweed, Saccharina japonica (Laminariales, Phaeophyta): its structural features and phylogenetic analyses with other photosynthetic plastids. Mar Genomics 10:1–9

    Article  PubMed  Google Scholar 

  • Watanabe K, Kishimoto T, Kumagai Y, Shimizu T, Uji T, Yasui H, Kishimura H (2019) Complete sequence of mitochondrial DNA of Gloiopeltis furcata (Postels and Ruprecht) J Agardh. Mitochondrial DNA B Resour 4:2543–2544

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao SH, Knoll AH, Yuan XL, Pueschel CM (2004) Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Bot 91:214–227

    Article  PubMed  Google Scholar 

  • Xu B, Yang ZH (2013) PAMLX: a graphical user interface for PAML. Mol Biol Evol 30:2723–2724

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Xiong GJ, Li PB, He F, Huang Y, Wang KB, Li ZH, Hua JP (2012) Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS ONE 7:e37128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi Y, Masuda M (2000) A taxonomic revision of Hypnea charoides-valentiae complex (Rhodophyta, Gigartinales) in Japan, with a description of Hypnea flexicaulis sp. nov. Phycol Res 48:27–35

    Article  Google Scholar 

  • Yang EC, Kim KM, Kim SY, Lee J, Boo GH, Lee JH, Nelson WA, Yi G, Schmidt WE, Fredericq S, Boo SM, Bhattacharya D, Yoon HS (2015) Highly conserved mitochondrial genomes among multicellular red algae of the Florideophyceae. Genome Biol Evol 7:2394–2406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang QC, Li X, Li Z, Pan ZH, Yang D (2019) The mitochondrial genome analysis of Trypetoptera punctulata (Diptera: Sciomyzidae). Mitochondrial DNA B Resour 4:97–98

    Article  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Wang XM, Qian H, Chi S, Liu C, Lui T (2012) Complete sequences of the mitochondrial DNA of the wild Gracilariopsis lemaneiformis and two mutagenic cultivated breeds (Gracilariaceae, Rhodophyta). PLoS ONE 7:e40241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang XM, Liu C, Jin YM, Liu T (2013) The complete mitochondrial genomes of two brown algae (Laminariales, Phaeophyceae) and phylogenetic analysis within Laminaria. J Appl Phycol 25:1247–1253

    Article  CAS  Google Scholar 

  • Zhang J, Liu N, Meinita MDN, Wang XM, Liu T (2020) The complete plastid genomes of Betaphycus gelatinus, Eucheuma denticulatum, and Kappaphycus striatus (Solieriaceae: Rhodophyta) and their phylogenetic analysis. J Appl Phycol 32:3521–3532

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2019MC049), the National Natural Science Foundation of China (Grant No. 31402300), and Agricultural Seed Project of Shandong Province and TaiShan industrial Experts Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Liu, P., Liu, X. et al. Complete organellar genomes and molecular phylogeny of Hypnea cervicornis (Gigartinales, Florideophyceae) from China. J Appl Phycol 34, 2705–2717 (2022). https://doi.org/10.1007/s10811-022-02801-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02801-3

Keywords

Navigation