Skip to main content
Log in

Recombinase polymerase amplification combined with lateral flow dipstick for the rapid detection of Chattonella marina

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Chattonella marina (Raphidophyceae) is a common microalgal species that has frequently caused harmful algal blooms (HABs). Here, recombinase polymerase amplification (RPA) was combined with a lateral flow dipstick (RPA-LFD) to establish a rapid detection method for this alga, aimed at providing an effective early warning of C. marina-forming HABs. A pair of specific RPA primers and an LFD probe was designed to target the internal transcribed spacer (ITS) sequence of C. marina. The specificity test with 20 control microalgal species indicated that the RPA-LFD was highly specific. Sensitivity test showed that the established RPA-LFD was 10 − 100 times more sensitive than conventional PCR. The detection limit of RPA-LFD was as low as 9.5 × 10−1 ng µL−1 for genomic DNA, 1.17 × 103 copies μL−1 for recombinant plasmid containing the inserted ITS sequence, and 10 cells mL−1 for the crude DNA extract of C. marina. In addition, the RPA-LFD was proved to be more accurate and sensitive than conventional PCR in the detection of target cells from natural samples, exhibiting its ability to be applied in the actual in situ detection scenarios. In conclusion, the developed RPA-LFD is rapid, specific, sensitive, and promising for being used in the point-of-care testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in the MS.

References

  • Abd El Wahed A, Sanabani SS, Faye O, Pessôa R, Patriota JV, Giorgi RR, Patel P, Böhlken-Fascher S, Landt O, Niedrig M, Zanotto PMdA, Czerny CP, Sall AA, Weidmann M (2017) Rapid molecular detection of Zika virus in acute-phase urine samples using the recombinase polymerase amplification assay. PLoS Curr 25;9. https://doi.org/10.1371/currents.outbreaks.a7f1db2c7d66c3fc0ea0a774305d319e

  • Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Ann Rev Mar Sci 4:143–176

  • Bentahir M, Ambroise J, Delcorps C, Pilo P, Gala JL (2018) Sensitive and specific recombinase polymerase amplification assays for fast screening, detection, and identification of Bacillus anthracis in a field setting. Appl Environ Microbiol 84:506–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Cai P, Zhang C, Wang Y, Zhang S, Guo C, Lu DD (2015) Hyperbranched rolling circle amplification as a novel method for rapid and sensitive detection of Amphidinium carterae. Harmful Algae 47:66–74

    Article  CAS  Google Scholar 

  • Connell L (2002) Rapid identification of marine algae (Raphidophyceae) using three-primer PCR amplification of nuclear terminal transcribed spacer (ITS) regions from fresh and archived material. Phycologia 41:15–21

    Article  Google Scholar 

  • Crannell Z, Castellanos-Gonzalez A, Nair G, Mejia R, White AC, Richards-Kortum R (2016) Multiplexed recombinase polymerase amplification assay to detect intestinal protozoa. Anal Chem 88:1610–1616

    Article  CAS  PubMed  Google Scholar 

  • Deng H, Gao Z (2015) Bioanalytical applications of isothermal nucleic acid amplification techniques. Anal Chim Acta 853:30–45

    Article  CAS  PubMed  Google Scholar 

  • Ding WC, Chen J, Shi YH, Lu XJ, Li MY (2010) Rapid and sensitive detection of infectious spleen and kidney necrosis virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Arch Virol 155:385–389

    Article  CAS  PubMed  Google Scholar 

  • El-Tholoth M, Branavan M, Naveenathayalan A, Balachandran W (2019) Recombinase polymerase amplification–nucleic acid lateral flow immunoassays for newcastle disease virus and infectious bronchitis virus detection. Mol Biol Rep 46:6391–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu MQ, Chen GF, Zhang CY, Wang YY, Sun R, Zhou J (2019) Rapid and sensitive detection method for Karlodinium veneficum by recombinase polymerase amplification coupled with lateral flow dipstick. Harmful Algae 84:1–9

    Article  CAS  PubMed  Google Scholar 

  • Fu MQ, Yang YC, Zhang CY, Chen GF, Wang YY (2020) Recombinase polymerase amplification combined with lateral-flow dipstick for rapid detection of Prorocentrum minimum. J Appl Phycol 32:1837–1850

    Article  CAS  Google Scholar 

  • Gaiani G, Toldrà A, Andree KB, Rey M, Diogène J, Alcaraz C, O’Sullivan CK, Campàs M (2021) Detection of Gambierdiscus and Fukuyoa single cells using recombinase polymerase amplification combined with a sandwich hybridization assay. J Appl Phycol 33:2273–2282

    Article  CAS  Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith ML, Chanley MH (eds) Culture of Marine Invertebrate Animals. Plenum Press, NY, pp 29–60

    Chapter  Google Scholar 

  • Jaroenram W, Owens L (2014) Recombinase polymerase amplification combined with a lateral flow dipstick for discriminating between infectious Penaeus stylirostris densovirus and virus-related sequences in shrimp genome. J Virol Methods 208:144–151

    Article  CAS  PubMed  Google Scholar 

  • Jaroenram W, Kiatpathomchai W, Flegel TW (2009) Rapid and sensitive detection of white spot syndrome virus by loop-mediated isothermal amplification combined with a lateral flow dipstick. Mol Cell Probes 23:65–70

    Article  CAS  PubMed  Google Scholar 

  • Jeong HJ, Du Yoo Y, Lim AS, Kim TW, Lee K, Kang CK (2013) Raphidophyte red tides in Korean waters. Harmful Algae 30:S41–S52

    Article  Google Scholar 

  • Jugnu R, Kripa V (2009) Effect of Chattonella marina [(Subrahmanyan) Hara et Chihara 1982] bloom on the coastal fishery resources along Kerala coast, India. J Mar Sci 38:77–88

    Google Scholar 

  • Karakkat BB, Hockemeyer K, Franchett M, Olson M, Mullenberg C, Koch PL (2018) Detection of root-infecting fungi on cool-season turfgrasses using loop-mediated isothermal amplification and recombinase polymerase amplification. J Microbiol Methods 151:90–98

    Article  CAS  PubMed  Google Scholar 

  • Kersting S, Rausch V, Bier FF, von Nickisch-Rosenegk M (2014) Rapid detection of Plasmodium falciparum with isothermal recombinase polymerase amplification and lateral flow analysis. Malaria J 13:1–9

    Article  CAS  Google Scholar 

  • Kissenkötter J, Hansen S, Böhlken-Fascher S, Ademowo OG, Oyinloye OE, Bakarey AS, Dobler G, Tappe D, Patel P, Czerny C-P, Abd El Wahed A (2018) Development of a pan-rickettsial molecular diagnostic test based on recombinase polymerase amplification assay. Anal Biochem 544:29–33

    Article  PubMed  CAS  Google Scholar 

  • Kudela RM, Raine R, Pitcher GC, Gentien P, Berdalet E, Enevoldsen H, Urban E (2018) Establishment, goals, and legacy of the global ecology and oceanography of harmful algal blooms (GEOHAB) programme. In: Glibert PM, Berdalet E, Burford MA, Pitcher GC, Zhou M (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 27–49

    Chapter  Google Scholar 

  • Lalle M, Possenti A, Dubey JP, Pozio E (2018) Loop-mediated isothermal amplification-lateral-flow dipstick (LAMP-LFD) to detect Toxoplasma gondii oocyst in ready-to-eat salad. Food Microbiol 70:137–142

    Article  CAS  PubMed  Google Scholar 

  • Lewitus AJ, Brock LM, Burke MK, DeMattio KA, Wilde SB (2008) Lagoonal stormwater detention ponds as promoters of harmful algal blooms and eutrophication along the South Carolina coast. Harmful Algae 8:60–65

    Article  CAS  Google Scholar 

  • Lillis L, Siverson J, Lee A, Cantera J, Parker M, Piepenburg O, Lehman DA, Boyle DS (2016) Factors influencing recombinase polymerase amplification (RPA) assay outcomes at point of care. Mol Cell Probes 30:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobato IM, O’Sullivan CK (2018) Recombinase polymerase amplification: basics, applications and recent advances. Trends Anal Chem 98:19–35

    Article  CAS  Google Scholar 

  • Ma Q, Yao J, Yuan S, Liu H, Wei N, Zhang J, Shan W (2019) Development of a lateral flow recombinase polymerase amplification assay for rapid and visual detection of Cryptococcus neoformans/C. gattii in cerebral spinal fluid. BMC Infect Dis 19:1–9

    Article  Google Scholar 

  • Marshall J, Hallegraeff G (1999) Comparative ecophysiology of the harmful alga Chattonella marina (Raphidophyceae) from South Australian and Japanese waters. J Plankton Res 21:1809–1822

    Article  Google Scholar 

  • Marshall J-A, Nichols PD, Hamilton B, Lewis RJ, Hallegraeff GM (2003) Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2:273–281

    Article  CAS  Google Scholar 

  • Mondal D, Ghosh P, Khan MAA, Hossain F, Böhlken-Fascher S, Matlashewski G, Kroeger A, Olliaro P, Abd El Wahed A (2016) Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasite Vector 9:281

    Article  CAS  Google Scholar 

  • Nie X, Zhang C, Wang Y, Guo C, Zhou J, Chen G (2017) Application of hyper-branched rolling circle amplification (HRCA) and HRCA-based strip test for the detection of Chattonella marina. Environ Sci Pollut Res 24:15678–15688

    Article  CAS  Google Scholar 

  • Noyer C, Abot A, Trouilh L, Leberre VA, Dreanno C (2015) Phytochip: development of a DNA-microarray for rapid and accurate identification of Pseudo-nitzschia spp and other harmful algal species. J Microbiol Meth 112:55–66

    Article  CAS  Google Scholar 

  • Oda T, Ishimatsu A, Shimada M, Takeshita S, Muramatsu T (1992) Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar Biol 112:505–509

    Article  CAS  Google Scholar 

  • Pavillard J (1916) Recherches sur les Diatomées pélagiques du Golfe du Lion. Trav Inst Univ Mounpellier 4:1–70

    Google Scholar 

  • Piepenburg O, Williams CH, Stemple DL, Armes NA (2006) DNA detection using recombination proteins. PLoS Biol 4:e204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin Y, Chen G, Zhang C, Wang Y, Zhou J (2019) Development of loop-mediated isothermal amplification combined with a chromatographic lateral-flow dipstick for rapid detection of Chattonella marina. Harmful Algae 89:101666

    Article  CAS  PubMed  Google Scholar 

  • Qin Y, Zhang C, Liu F, Chen Q, Yang Y, Wang Y, Chen G (2020) Establishment of double probes rolling circle amplification combined with lateral flow dipstick for rapid detection of Chattonella marina. Harmful Algae 97:101857

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi M, Yamatogi T, Hirae S, Ishida N, Hrano K, Aoki K (2017) Diurnal vertical migration of Chattonella spp. in mesocosm during a red tide in Isahaya Bay, Nagasaki Prefecture. Japan Bull Plankt Soc Jpn 64:1–10

    Google Scholar 

  • Santiago-Felipe S, Tortajada-Genaro LA, Puchades R, Maquieira A (2014) Recombinase polymerase and enzyme-linked immunosorbent assay as a DNA amplification-detection strategy for food analysis. Anal Chim Acta 811:81–87

    Article  CAS  PubMed  Google Scholar 

  • Schaap A, Rohrlack T, Bellouard Y (2012) Lab on a chip technologies for algae detection: a review. J Biophotonics 5:661–672

    Article  CAS  PubMed  Google Scholar 

  • Shin Y, Perera AP, Kim KW, Park MK (2013) Real-time, label-free isothermal solid-phase amplification/detection (ISAD) device for rapid detection of genetic alteration in cancers. Lab Chip 13:2106–2114

    Article  CAS  PubMed  Google Scholar 

  • Subrahmanyan R (1954) On the life-history and ecology of Hornellia marina gen. et sp. nov., (Chloromonadineae), causing green discoloration of the sea and mortality among marine organisms off the Malabar Coast. Indian J Fish 1:182–203

    Google Scholar 

  • Sun K, Xing W, Yu X, Fu W, Wang Y, Zou M, Luo Z, Xu D (2016) Recombinase polymerase amplification combined with a lateral flow dipstick for rapid and visual detection of Schistosoma japonicum. Parasite Vector 9:1–9

    Article  CAS  Google Scholar 

  • Toldrà A, Jauset-Rubio M, Andree KB, Fernández-Tejedor M, Diogène J, Katakis I, O’Sullivan CK, Campàs M (2018) Detection and quantification of the toxic marine microalgae Karlodinium veneficum and Karlodinium armiger using recombinase polymerase amplification and enzyme-linked oligonucleotide assay. Anal Chim Acta 1039:140–148

    Article  PubMed  CAS  Google Scholar 

  • Tu PA, Shiu JS, Lee SH, Pang VF, Wang DC, Wang PH (2017) Development of a recombinase polymerase amplification lateral flow dipstick (RPA-LFD) for the field diagnosis of caprine arthritis-encephalitis virus (CAEV) infection. J Virol Meth 243:98–104

    Article  CAS  Google Scholar 

  • Wang WJ (2017) The causes and bloom process of a red tide species of Chattonella marina in Sishili Bay in 2014. J Anhui Agric Sci 45:66–72

    Google Scholar 

  • Wang BK, Zhang CY, Liu FG, Li RQ, Wang YY, Chen GF (2021) Development of a recombinase polymerase amplification combined with lateral flow dipstick assay for rapid and sensitive detection of Heterosigma akashiwo. J Appl Phycol 33:3165–3178

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Academic Press, NY pp 315–322

    Google Scholar 

  • Xi Y, Xu CZ, Xie ZZ, Zhu DL, Dong JM (2019) Rapid and visual detection of dengue virus using recombinase polymerase amplification method combined with lateral flow dipstick. Mol Cell Probes 46:101413

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Li L, Jin W, Wan Y (2014) Event-specific real-time RPA detection of transgenic rice Kefeng 6. GMO Biosafety Res 5:1–5

    Google Scholar 

  • Yuan J, Mi T, Zhen Y, Yu Z (2012) Development of a rapid detection and quantification method of Karenia mikimotoi by real-time quantitative PCR. Harmful Algae 17:83–91

    Article  CAS  Google Scholar 

  • Zhai YD, Li RQ, Liu FG, Zhang CY, Wang YY, Chen GF (2021) Recombinase polymerase amplification combined with lateral flow dipstick for the rapid detection of Prorocentrum donghaiense. Mar Biol Res 17:646–657

    Article  Google Scholar 

  • Zhang QC, Liu Q, Kang ZJ, Yu RC, Yan T, Zhou MJ (2015) Development of a fluorescence in situ hybridization (FISH) method for rapid detection of Ulva prolifera. Estuar Coast Shelf Sci 163:103–111

    Article  CAS  Google Scholar 

  • Zhao J, Li Z, Wang S, Zhang H, Zheng W (2018) Method of immunomagnetic separation and PCR-lateral flow dipstick for fast detecting bovine ingredient in food. Food Res Dev 3:26

    Google Scholar 

  • Zhu P, Huang HL, Zhou CX, Xu J, Qiao LL, Dang CY, Pang JH, Gao WF, Yan XJ (2019) Sensitive and rapid detection of Prymnesium parvum (Haptophyceae) by loop–mediated isothermal amplification combined with a lateral flow dipstick. Aquaculture 505:199–205

    Article  CAS  Google Scholar 

  • Zohdi E, Abbaspour M (2019) Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. Int J Environ Sci Technol (Tehran) 16:1789–1806

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Shandong Provincial Natural Science Foundation, China (ZR2020MD081); the National Scientific Foundation of China (No. 31600309, 41476086); HIT Scientific Research Innovation Fund/the Fundamental Research Funds for the Central Universities (No. HIT.NSRIF.201702 and HIT.NSRIF.201709); and HIT Environment and Ecology Innovation Special Funds (No. HSCJ201622).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofu Chen.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Yang, Y., Liu, F. et al. Recombinase polymerase amplification combined with lateral flow dipstick for the rapid detection of Chattonella marina. J Appl Phycol 34, 1607–1620 (2022). https://doi.org/10.1007/s10811-022-02737-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-022-02737-8

Keywords

Navigation