Skip to main content
Log in

Seaweeds as a promising resource for blue economy development in Tunisia: current state, opportunities, and challenges

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Many western countries show an increased interest in using algae in several sectors such as human food and animal feed, nutraceuticals, cosmetics and pharmaceuticals, agriculture, or bioenergy. Biomass of marine origin, and especially seaweed, is a key element for blue growth and is expected to contribute to the development of the growing European blue economy. Several Research and Development and Research and Innovation Projects result in the establishment of an emerging seaweed aquaculture in the Northern European countries. However, macroalgal cultivation and bioprocessing is still scarce in the Mediterranean area, particularly in Tunisia, where seaweeds are abundant on its coast, they remain little exploited. Ongoing projects from different research institutes focus on biological activities of macroalgae, the extraction of active compounds, and the potential uses as phycocolloids, pigments, lipids, and bioactive metabolites characterization as well as bioproduct enhancement. The results of these investigations demonstrate that macroalgae from the Tunisian coasts are a source of valuable compounds and that they can be used as a natural renewable resource suitable for a large array of industrial applications. Further to this, specific research activities on seaweed cultivation have been conducted particularly for Gracilaria and Ulva. In this paper, we highlight the potential of the seaweed sector in Tunisia in terms of biodiversity, cultivation, and bioprocessing and discuss the challenges in various sectors, i.e., biology, building capacity, technology, or policy, that currently hinder the expansion of a sustainable Tunisian seaweed industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelhamid A, Jouini M, Bel Haj Amor H, Mzoughi Z, Dridi M, Ben Said R, Bouraoui A (2018) Phytochemical analysis and evaluation of the antioxidant, anti-inflammatory, and antinociceptive potential of phlorotannin-rich fractions from three Mediterranean brown seaweeds. Mar Biotechnol 20:60–74

    Article  CAS  Google Scholar 

  • Andreakis N, Procaccini G, Kooistra W (2004) Asparagopsis taxiformis and Asparagopsis armata (Bonnemaisoniales, Rhodophyta): genetic and morphological identification of Mediterranean populations. Eur J Phycol 39:273–283

  • Afli A, Ayari R, Zaabi S (2008) Ecological quality of some Tunisian coast and lagoon locations, by using benthic community parameters and biotic indices. Est Coast Shelf Sci 80:269–280

  • Ajjabi Chebil L, Sadok S (2015) La macroalgue verte Ulva sp. pour la production du bioéthanol: Optimisation et Caractérisation. Bull Inst Nat Sci Tech Mer de Salammbô 42:31–32

  • Ajjabi Chebil L, Abaab M, Segni R (2018) The red macroalga Gracilaria verrucosa in co-culture with the Mediterranean mussels Mytilus galloprovincialis: productivity and nutrient removal performance. Aquacult Int 26:253–266

  • Ajjabi Chebil L, Ben Ammar I, Ktari L, Cherif D, Cherifi H, Sadok S (2019) Effet de l’extrait liquide de l’algue verte Chaetomorpha linum (Müller) Kütz., 1849 sur la germination et la croissance du blé dur Triticum turgidum L. subsp. durum. Bull Inst Nat Sci Tech Mer de Salammbô 46:133–147

  • Alemán AE, Robledo D, Hayashi L (2019) Development of seaweed cultivation in Latin America: current trends and future prospects. Phycologia 58:462–471

    Article  Google Scholar 

  • Arunkumar K, Raja R, Kumar VBS, Joseph A, Shilpa T, Carvalho IS (2020) Antioxidant and cytotoxic activities of sulfated polysaccharides from five different edible seaweeds. J Food Measur Charact 15:567–576

    Article  Google Scholar 

  • Aleya L, Béjaoui B, Dhib A, Ziadi B, Fertouna-Bellekhal M, Helali M-A et al (2019) Tunisia. In: Sheppard C (ed) World seas: an environmental evaluation. Academic Press, London, pp 261–282

  • Anonymous (2017) Aquaculture industry small but growing. Global agricultural information network. report number: TS1705

  • Ayari F (1990) Coastal zone management in Tunisia: towards an action plan for the future. World Maritime University Dissertations, Sweden

  • Azaza MS, Mensi F, Ksouri J, Dhraief MN, Brini B, Abdelmouleh A, Kraïem MM (2008) Growth of Nile tilapia (Oreochromis niloticus L.) fed with diets containing graded levels of green algae ulva meal (Ulva rigida) reared in geothermal waters of southern Tunisia. J Appl Ichthyol 24:202–207

    Article  CAS  Google Scholar 

  • Bartolo AG, Zammit G, Peters AF, Küpper FC (2020) The current state of DNA barcoding of macroalgae in the Mediterranean Sea: presently lacking but urgently required. Bot Mar 63:253–272

    Article  Google Scholar 

  • Ben Alaya H (1972) Répartition et conditions d’installation de Posidonia oceanica Delile et de Cymodocea nodosa Ascherson dans le golfe de Tunis. Bul de l’Instit Nat Sci Tech Mer de Salammbô 2:331–416

  • Ben Abdallah Kolsi R, Frikha D, Jribi I, Hamza A, Fekih L, Belghith K (2015) Screening of antibacterial and antifungal activity in marine macroalgae and magnoliophytea from the coast of Tunisia. Int J Pharm Pharm Sci 7:47–51

    Google Scholar 

  • Ben Douaoua I (2019) Quelques voies de valorisation de la macroalgue verte Chaetomorpha linum. Master’s thesis, National Institute of Agronomy of Tunis

  • Ben Maiz N (1995) Étude nationale sur la diversité biologique de la flore marine et aquatique en Tunisie. Projet de coopération : MEAT / PNUE / GEF : 77 pp

  • Ben Maiz N, Boudouresque CF (1986) Les algues. In: Boudouresque CF, Harmelin JG, Jeudy de Grissac A (Eds) Le benthos marin de l’île de Zembra (Parc National, Tunisie. UNEP-UICN-RAC/SPA, GIS Posidonie pub, Marseille

  • Ben Maiz N, Boudouresque CF, Ouahchi F (1987) Inventaire des algues et phanérogames marines benthiques de la Tunisie. Giorn Bot Ital 12:259–304

    Article  Google Scholar 

  • Ben Redjem Y, Ktari L, Medhioub A, Romdhane MS, Langar H, El Bour M (2013) Antibacterial and algicidal properties of some brown seaweeds from northern coasts of Tunisia. Life Environ 63:127–133

    Google Scholar 

  • Ben Saad H, Gargouri M, Kallel F, Chaabene R, Boudawara T, Jamoussi K, Magné C, Zeghal KM, Hakim A, Ben Amara I (2016) Flavonoid compounds from the red marine alga Alsidium corallinum protect against potassium bromate-induced nephrotoxicity in adult mice. Environ Toxicol 32:1475–1486

    Article  PubMed  Google Scholar 

  • Ben Saad H, Ben Amara I, Kharrat N, Giroux-Metgès MA, Hakim A, Zeghal KM, Talarmin H (2018) Cytoprotective and antioxidant effects of the red alga Alsidium corallinum against hydrogen peroxide-induced toxicity in rat cardiomyocytes. Arch Physiol Biochem 125:35–43

    Article  PubMed  Google Scholar 

  • Ben Said R, Ksouri J (1999) La rhodophycée Gracilaria verrucosa du lac de Bizerte (Tunisie): Variations mensuelles de la biomasse, du rendement d’extraction et de la qualité de l’agar. Bull INSTM 26:127–136

    Google Scholar 

  • Ben Said R, El Abed A, Romdhane MS (2002) Etude d’une population de l’algue brune Padina pavonica (L) Lamouroux à Cap Zebib (nord de la Tunisie). Bull Inst Nat Scie Tech Mer de Salammbô 29:95–103

    Google Scholar 

  • Ben Said R, Romdhane MS, El Abed A, M’Rabet R (2011) Temporal variation of some biometric parameters, agar-yield and quality of Gelidium spinosum (S.G. Gmelin) P.C. Silva (Rhodophyta: Rhodophyceae: Gelidiales) from Monastir coasts (Tunisia). Cah Biol Mar 52:71–78

    Google Scholar 

  • Ben Said R, Mensi F, Majdoub H, Ben Said A, Ben Said B, Bouraoui A (2018) Effects of depth and initial fragment weights of Gracilaria gracilis on the growth, agar yield, quality, and biochemical composition. J Appl Phycol 30:2499–2512

    Article  CAS  Google Scholar 

  • Berchez FAS, Pereira RTL, Kamiya NF (1993) Culture of Hypnea musciformis (Rhodophyta, Gigartinales) on artificial substrates attached to linear ropes. Hydrobiologia 260:415–420

    Article  Google Scholar 

  • Besbes Hlila M, Omri Hichri A, Mahjoub MA, Mighri Z, Mastouri M (2017) Antioxidant and antimicrobial activities of Padina pavonica and Enteromorpha sp. from the Tunisian Mediterranean coast. J Coast Life Med 5:336–342

    Article  Google Scholar 

  • Bolton JJ, Robertson-Andersson DV, Shuuluka D, Kandjengo L (2009) Growing Ulva (Chlorophyta) in integrated systems as a commercial crop for abalone feed in South Africa: a SWOT analysis. J App Phycol 21:575–583

    Article  Google Scholar 

  • Bouafif C, Verlaque M, Langar H (2014) Cystoseira taxa new for the marine flora of Tunisia. Cryptogam Algol 35:269–283

    Article  Google Scholar 

  • Bouafif C, Verlaque M, Langar H (2016) New contribution to the knowledge of the genus Cystoseira C. Agardh in the Mediterranean Sea, with the reinstatement of species rank for C. schiffneri Hamel. Cryptogam Algol 37:133–154

    Article  Google Scholar 

  • Boudouresque C-F, Ben Souissi J, Perret-Boudouresque M, Verlaque M (2016) The red sea macroalga Palisada maris-rubri (Rhodobionta, Archaeplastida): first record in Tunisia. Rapp Comm Int Mer Médit 41:414

    Google Scholar 

  • Bruhn A, Dahl J, Nielsen HB, Nikolaisen L, Rasmussen MB, Markager S et al (2011) Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion. Bioresour Technol 102:2595–2604

    Article  CAS  PubMed  Google Scholar 

  • Buschmann AH, Camus C, Infante J, Neori A, Israel A, Hernández-González MC, Pereda SV, Gómez-Pinchetti JL, Golberg A, Tadmor-Shalev N, Critchley AT (2017) Seaweed production: overview of the global state of exploitation, farming and emerging research activity. Eur J Phycol 52:391–406

    Article  Google Scholar 

  • Capillo G, Savoca S, Costa R, Sanfilippo M, Rizzo C, Lo Giudice A, Albergamo A, Rando R, Bartolomeo G, Spanò N, Faggio C (2018) New insights into the culture method and antibacterial potential of Gracilaria gracilis. Mar Drugs 16:492–513

    Article  CAS  PubMed Central  Google Scholar 

  • Charrier B, Barbier M, Araujo R, Holdt SL, Jacquemin B, Rebours C (2019) PEGASUS - Phycomorph European guidelines for a sustainable aquaculture of seaweeds. In: Barbier M, Charrier B (eds) COST action FA1406. Roscoff, France. https://doi.org/10.21411/2c3w-yc73

  • Chartosia N, Anastasiadis D, Bazairi H, Crocetta F, Deidun A, Despalatović M et al (2018) New Mediterranean biodiversity records. Mediter Mar Sci 19:398–415

    Article  Google Scholar 

  • Chemodanov A, Robin A, Jinjikhashvily G, Yitzhak D, Liberzon A, Israel A, Golberg A (2019) Feasibility study of Ulva sp. (Chlorophyta) intensive cultivation in a coastal area of the Eastern Mediterranean Sea. Biofuels Bioprod Bioref 13:864–877

    Article  CAS  Google Scholar 

  • Cherif W, El Bour M, Dali Yahia-Kefi O, Ktari L (2011) Activité anti-microfouling d’algues vertes récoltées sur la côte nord Tunisienne. Bull Inst Nat Sci Tech Mer 38:131–138

  • Cherif D, Ajjabi Chebil L (2014) Culture de la macroalgue verte Chaetomorpha linum pour la production de bioethanol. Actes des Quinzièmes Journées Tunisiennes des Sciences de la Mer Mahdia (TUNISIE) du 14 au 17 décembre 2013

  • Chiboub O, Ktari L, Sifaoui I, Lopez-Arencibia A, Reyes-Batlle M, Mejri M, Valladares B, Abderrabba M, Piñero JE, Lorenzo-Morales J (2017) In vitro amoebicidal and antioxidant activities of some Tunisian seaweeds. Exp Parasitol 183:76–80

    Article  PubMed  Google Scholar 

  • Chiboub O, Sifaoui I, Lorenzo-Morales J, Abderrabba M, Mejri M, Javier Fernández J, Piñero JE, Díaz-Marrero AR (2019) Spiralyde A, an antikinetoplastid dolabellane from the brown alga Dictyota spiralis. Mar Drugs 17:192

    Article  CAS  PubMed Central  Google Scholar 

  • Cottier-Cook EJ, Nagabhatla N, Badis Y, Campbell M, Chopin T, Dai W et al (2016) Safeguarding the future of the global seaweed aquaculture industry. United Nations University (INWEH) and Scottish Association for Marine Science Policy Brief. ISBN 978–92–808–6080–1

  • Cuaton GP (2019) A post-disaster gendered value chain analysis on seaweed farming after super typhoon Haiyan in the Philippines. J Enterp Comm: People and Places in the Global Economy 13:508–524

  • Djellouli A (1987) Sur la présence de Codium fragile (Suringar) Hariot (Codiaceae, Ulvophyceae) en Tunisie. Bull Soc Linnée Provence 39:103–105

    Google Scholar 

  • Djellouli A (2000) Caulerpa racemosa (Forsskål) J. Agardh en Tunisie. In: Proceedings of the First Mediterranean Symposium on Marine Vegetation, (Ajaccio, France). pp 124–127

  • Djellouli A, Verlaque M, Rais C (2000) Macroflore benthique de la lagune de Bizerte. Proceedings of the First Mediterranean Symposium on Marine Vegetation, (Ajaccio, France). pp 128–131

  • Duarte CM, Wu J, Xiao X, Bruhn A, Krause-Jensen D (2017) Can seaweed farming play a role in climate change mitigation and adaptation? Front Mar Sci 4:100

    Article  Google Scholar 

  • de Almeida CL, Falcão Hde S, Lima GR, Montenegro Cde A, Lira NS, de Athayde-Filho PF et al (2011) Bioactivities from marine algae of the genus Gracilaria. Int J Mol Sci 12:4550–73

  • El Din NGS, El-Sherif ZM (2012) Nutritional value of some algae from the north-western Mediterranean coast of Egypt. J Appl Phycol 24:613–626

    Article  CAS  Google Scholar 

  • El Maghraby DM, Fakhry EM (2015) Lipid content and fatty acid composition of Mediterranean macro-algae as dynamic factors for biodiesel production. Oceanologia 57:86–92

    Article  Google Scholar 

  • Elouaer MA, Latique S, Chernane H, Hannachi C, Elkaoua M (2014) Effect of seaweed extract of Sargassum vulgare on germination behavior of two tomatoes cultivars (Solanum lycopersicum L) under salt stress. Oct J Env Res 2:203–210

    Google Scholar 

  • FAO (2020)The state of world fisheries and aquaculture 2020. Sustainability in action. Rome

  • Feldmann J (1931) Note sur quelques algues marines de Tunisie. Publications de la “ Station Océanographique de Salammbô ” Notes 22p

  • Feldmann J, Feldmann G (1939) Additions à la flore des algues marines de l’Algérie. Bull Soc L’hist Nat L’afrique Du Nord 30:453–464

    Google Scholar 

  • Feldmann J (1937) Recherches sur la végétation marine de la Méditerranée. La côte des Albères. Rev Algo 10, 1–139.

  • Figueroa FL, Flores-Moya A, Vergara JJ, Korbee N, Hernández I (2014) Autochthonous Seaweeds. In: Goffredo S, Dubinsky Z (eds) The Mediterranean Sea. Springer, Dordrecht, pp 123–135

    Chapter  Google Scholar 

  • Friedlander M, Levy I (1995) Cultivation of Gracilaria in outdoor tanks and ponds. J Appl Phycol 7:315–324

  • Francavilla M, Franchi M, Monteleone M, Caroppo C (2013) The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 11:3754–3776

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesan M, Subba Rao PV, Mairh OP (1999) Culture of marine brown alga Padina boergesenii (Dictyotales, Phaeophyta) at Mandapam coast, southeast coast of India. Indian J Mar Sci 28:461–463

    Google Scholar 

  • Ganesan M, Thiruppathi S, Jha B (2006) Mariculture of Hypnea musciformis (Wulfen) Lamouroux in South east coast of India. Aquaculture 256:201–211

    Article  Google Scholar 

  • Ganesan AR, Tiwari U, Rajauria G (2019) Seaweed nutraceuticals and their therapeutic role in disease prevention. Food Sci Human Wellness 8:252–263

    Article  Google Scholar 

  • Giakoumi S, Katsanevakis S, Albano PG, Azzurro E, Cardoso AC, Cebrian E et al (2019) Management priorities for marine invasive species. Sci Total Environ 688:976–982

    Article  CAS  PubMed  Google Scholar 

  • Ge S, Champagne P (2017) Cultivation of the marine macroalgae Chaetomorpha linum in municipal wastewater for nutrient recovery and biomass production. Environ Sci Technol 51:3558–3566

  • Guiry MD, Guiry GM (2020) AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. https://www.algaebase.org. Accessed 29 January 2021

  • Hasselström L, Visch W, Gröndahl F, Nylund GM, Pavia H (2018) The impact of seaweed cultivation on ecosystem services - a case study from the west coast of Sweden. Mar Pollut Bull 133:53–64

    Article  PubMed  Google Scholar 

  • Helmes R, López-Contreras A, Benoit M, Abreu H, Maguire J, Moejes F, Burg S (2018) Environmental Iimpacts of experimental production of lactic acid for bioplastics from Ulva spp. Sustainability 10:2462

    Article  CAS  Google Scholar 

  • Henríquez-Antipa LA, Cárcamo F (2019) Stakeholder’s multidimensional perceptions on policy implementation gaps regarding the current status of Chilean small-scale seaweed aquaculture. Mar Policy 103:138–147

    Article  Google Scholar 

  • Hentati F, Delattre C, Ursu AV, Desbrières J, Le Cerf D, Gardarin C, Abdelkafi S, Michaud P, Pierre G (2018) Structural characterization and antioxidant activity of water-soluble polysaccharides from the Tunisian brown seaweed Cystoseira compressa. Carbohydr Polym 198:589–600

    Article  CAS  PubMed  Google Scholar 

  • Hwang EK, Baek JM, Park CS (2007) Cultivation of the green alga, Codium fragile (Suringar) Hariot, by artificial seed production in Korea. J Appl Phycol 20:469–475

  • INS (2011–2019) Statistiques du commerce extérieur. Publications of the  National Institute of  Statistics

  • Ismail A (2018) Activités antimicrobiennes de quelques macroalgues des côtes Tunisiennes et des bactéries associées. PhD Thesis, University of El Manar, Faculty of Sciences of Tunis

  • Ismail A, Hammami W, Mensi F, Ktari L (2015) Bioplastic from agar: hydrophilic and thermo-mecanical properties. Bull Inst Nat Sci Tech Mer de Salammbô 42:17–19

  • Ismail A, Ktari L, Ahmed M, Bolhuis H, Boudabbous A, Stal LJ, Cretoiu MS, El Bour M (2016) Antimicrobial activities of epiphytic bacteria associated with the brown alga Padina pavonica. Front Microbiol 7:1072

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail-Ben Ali A, El Bour M, Ktari L, Bolhuis H, Ahmed M, Boudabbous A, Stal LJ (2012) Jania rubens associated bacteria: molecular identification and antimicrobial activity. J Appl Phycol 24:525–534

    Article  CAS  Google Scholar 

  • Ismail A, Ktari L, Ben Redjem Romdhane Y, Aoun B, Sadok S, Boudabous A, El Bour M (2018) Antimicrobial fatty acids from green alga Ulva rigida (Chlorophyta). BioMed Res Int. https://doi.org/10.1155/2018/3069595

  • Jaballi I, Ben Saad H, Bkhairia I, Cherif B, Kallel C, Boudawara O et al (2018) Cytoprotective effects of the red marine alga Chondrus canaliculatus against maneb-induced hematotoxicity and bone oxidative damages in adult rats. Biol Trace Element Res 184:99–113

    Article  CAS  Google Scholar 

  • Jaballi I, Sallem I, Feki A, Cherif B, Kallel C, Boudawara O et al (2019) Polysaccharide from a Tunisian red seaweed Chondrus canaliculatus: Structural characteristics, antioxidant activity and in vivo hemato-nephroprotective properties on Maneb induced toxicity. Int J Biol Macromol 123:1267–1277

    Article  CAS  PubMed  Google Scholar 

  • Kara MH, Lacroix D, Sadek S, Blancheton JP, Rey-Valette H, Kraiem M (2016) Vingt ans d’aquaculture en Afrique du Nord : évolutions, bilan critique et avenir. Cah Agric 25:64004

    Article  Google Scholar 

  • Kraan S, Barrington KA (2005) Commercial farming of Asparagopsis armata (Bonnemaisoniceae, Rhodophyta) in Ireland, maintenance of an introduced species?. J Appl Phycol 17:103–110

  • Karray R, Karray F, Loukil S, Mhiri N, Sayadi S (2016) Anaerobic co-digestion of Tunisian green macroalgae Ulva rigida with sugar industry wastewater for biogas and methane production enhancement. Waste Manage 61:171–178

    Article  Google Scholar 

  • Kim S-K, Ravichandran YD, Khan SB, Kim YT (2008) Prospective of the cosmeceuticals derived from marine organisms. Biotech Bioprocess Eng 13:511–523

    Article  CAS  Google Scholar 

  • Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1–13

    Article  CAS  Google Scholar 

  • Koz FFY, Karabay Yavasoglu NU, Demirel Z, Sukatar A, Ozdemir G (2009) Antioxidant and antimicrobial activities of Codium fragile (Suringar) Hariot (Chlorophyta) essential oil and extracts. Asian J Chem 21:1197–1209

    CAS  Google Scholar 

  • Ksouri J, Ben Said R (1998) Potentialites en macroalgues : cartographie et biomasse de l’agarophyte Gracilaria dans le lac de Bizerte. Bulletin INSTM 25:17–34

    Google Scholar 

  • Ksouri J, Ben Said R, Beji O (1997) Evaluation des potentialités quantitatives naturelles des gracilaires (algues rouges) du lac nord de Tunis. Bull INSTM 24:15–27

    Google Scholar 

  • Ksouri J, El Ferjani H, Mensi F (2008) Estimation du stock naturel de l’algue brune Padina pavonica (L.) Thivy en Tunisie septentrionale (Cap Zebib). Bull Inst Nat Sci Tech Mer de Salammbô 35:57–60

    Google Scholar 

  • Ktari L (2017) Pharmacological potential of Ulva species: a valuable resource. J Anal Pharm Res 6:00165

    Google Scholar 

  • Ktari L (2020) Workshop retrospective- ‘marine algae: potential uses and developments’ Tunisia, 9th to 14th July 2018. ISAP newsletter September:16–18

  • Ktari L, Guyot M (1999) A cytotoxic oxysterol from the marine alga Padina pavonica (L.) Thivy. J Appl Phycol 11:511–513

    Article  CAS  Google Scholar 

  • Ktari L, Guyot M (2006) An anti-inflammatory compound from the green alga Ulva rigida collected from Tunisian coasts. Electron J Nat Subs 1:160

    Google Scholar 

  • Ktari L, Blond A, Guyot M (2000) 16β-Hydroxy-5α-cholestane-3,6-dione, a novel cytotoxic oxysterol from the red alga Jania rubens. Bioorg Med Chem Lett 10:2563–2565

    Article  CAS  PubMed  Google Scholar 

  • Langar H, Djellouli A, Ben Mustapha K, El Abed A (2000) Première signalisation de Caulerpa taxifolia (vahl) J. Agardh en Tunisie. Bull Inst Nat Sci Tech Mer de Salammbô 27:3–8

  • Lee C, Park GH, Ahn EM, Kim BA, Park CI, Jang JH (2013) Protective effect of Codium fragile against UVB-induced pro-inflammatory and oxidative damages in HaCaT cells and BALB/c mice. Fitoterapia 86:54–63

  • Langton R, Augyte S, Price N, Forster J, Noji T, Grebe G, St. Gelais A, Byron CJ (2019). An ecosystem approach to the culture of seaweed. NOAA Technical Memorandum NMFS-F/SPO-195

  • Leal Filho W, Azeiteiro U, Alves F, Pace P, Mifsud M, Brandli L et al (2017) Reinvigorating the sustainable development research agenda: the role of the sustainable development goals (SDG). Int J Sust Dev World Econ 25:131–142

    Article  Google Scholar 

  • Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microbiol Ecol 11:149–163

    Article  CAS  Google Scholar 

  • Li J, Kangas P, Terlizzi DE (2014) A simple cultivation method for Chesapeake Bay Ulva intestinalis for algal seed stock. N Am J Aquacult 76:127–129

    Article  CAS  Google Scholar 

  • Loureiro R, Gachon CMM, Rebours C (2015) Seaweed cultivation: potential and challenges of crop domestication at an unprecedented pace. New Phytol 206:489–492

    Article  PubMed  Google Scholar 

  • Magnusson M, Glasson CRK, Vucko MJ, Angell A, Loon Neoh T, de Nys R (2019) Enrichment processes for the production of high-protein feed from the green seaweed Ulva ohnoi. Algal Res 41:101555

    Article  Google Scholar 

  • Manghisi A, Miladi R, Armeli Minicante S, Genovese G, Le Gall L, Abdelkafi S, Saunders GW, Morabito M (2019) DNA barcoding sheds light on novel records in the Tunisian red algal flora. Cryptogam Algol 40:5–27

    Article  Google Scholar 

  • Mannino AM, Cicero F, Toccaceli M, Pinna M, Balistreri P (2019) Distribution of Caulerpa taxifolia var. distichophylla (Sonder) Verlaque, Huisman & Procaccini in the Mediterranean Sea. Nature Conservation 37:17–29

    Article  Google Scholar 

  • Mazarrasa I, Olsen YS, Mayol E, Marbà N, Duarte CM (2014) Global unbalance in seaweed production, research effort and biotechnology markets. Biotechnol Adv 32:1028–1036

    Article  PubMed  Google Scholar 

  • McHugh DJ (2002) Prospects for seaweed production in developing countries. FAO Fisheries Circular No. 968 FIIU/C968

  • Meñez EG, Mathieson AC (1981) The marine algae of Tunisia. Smithsonian Contrib Mar Sci 10:1–59

  • Mensi F, Ksouri J, Seale E, Romdhane MS, Fleurence J (2012) A statistical approach for optimization of R-phycoerythrin extraction from the red algae Gracilaria verrucosa by enzymatic hydrolysis using central composite design and desirability function. J Appl Phycol 24:915–926

    Article  CAS  Google Scholar 

  • Mensi F, Ksouri J, Hammami W, Romdhane MS (2014) Etat des connaissances et perspectives de recherches sur la culture de gracilariales (Gracilaria et Gracilariopsis): application à la lagune de Bizerte. Bull Inst Nat Sci Tech Mer de Salammbô 41:101–119

    Google Scholar 

  • Mensi F, Nasraoui S, Bouguerra S, Ben Ghedifa A, Chalghaf M (2020) Effect of lagoon and sea water depth on Gracilaria gracilis growth and biochemical composition in the northeast of Tunisia. Sci Rep 10:10014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mhadhebi L, Dellai A, Clary-Laroche A, Ben Said R, Robert J, Bouraoui A (2012) Anti-Inflammatory and antiproliferative activities of organic fractions from the Mediterranean brown seaweed, Cystoseira compressa. Drug Dev Res 73:82–89

    Article  CAS  Google Scholar 

  • Miladi R, Manghisi A, Armeli Minicante S, Genovese G, Abdelkafi S, Morabito M (2018) A DNA barcoding survey of Ulva (Chlorophyta) in Tunisia and Italy reveals the presence of the overlooked alien U. ohnoi. Cryptogam Algol 39:85–107

    Article  Google Scholar 

  • Moreira Leite B, Campos B, Mata P, Paulo Noronha J, Diniz M (2019) Are seaweeds the food of the future? Challenges for its conservation and introduction in the Portuguese diet. Ann Med 51:169–169

    Article  Google Scholar 

  • Nardelli AE, Chiozzini VG, Braga ES, Chow F (2019) Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. J Appl Phycol 31:847–856

    Article  CAS  Google Scholar 

  • Neifar M, Chatter R, Chouchane H, Genouiz R, Jaouani A, Masmoudi AS, Cherif A (2016) Optimization of enzymatic saccharification of Chaetomorpha linum biomass for the production of macroalgae-based third generation bioethanol. AIMS Bioeng 3:400–411

    Article  CAS  Google Scholar 

  • Neori A, Shpigel M, Ben-Ezra D (2000) A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 186:279–291

    Article  Google Scholar 

  • Nielsen MM, Bruhn A, Rasmussen MB, Olesen B, Larsen MM, Møller HB (2011) Cultivation of Ulva lactuca with manure for simultaneous bioremediation and biomass production. J Appl Phycol 24:449–458

    Article  Google Scholar 

  • Patarra RF, Lloveras AA, Carreiro AS, Abreu MH, Buschmann AH, Neto AI (2019) Short term effects of irradiance on the growth of Pterocladiella capillacea (Gelidiales, Rhodophyta). Arquipelago - Life and Marine Sciences 1:85–94

  • Pergent G, Kempf M (1993) L’environnement marin côtier en Tunisie. IFREMER/ ANPE Tunis /GIS Posidonie, CCE-DGXI

  • Petersen HE (1918) Algae (excl. calcareous algae). In: Schmidt J (ed) Report on the Danish oceanographical expeditions 1908–1910 to the Mediterranean and adjacent seas. Vol. II, Københaven

  • Piazzi L, Ceccherelli G, Cinelli F (2001a) Threat to macroalgal diversity: effects of the introduced green alga Caulerpa racemosa in the Mediterranean. Mar Ecol Prog Ser 210:149–159

  • Piazzi L, Balata D, Cinelli F (2001b) Incidence des Rhodophyceae exotiques Acrothamnion preissii et Womersleyella setacea sur le peuplement algal des rhizomes de Posidonia oceanica. In: Gravez et al (Eds) Fourth International Workshop on Caulerpa taxifolia, Marseille, 19–20 September 1997. pp 403–406

  • Pinteus S, Rodrigues AN, Silva J, Lokman C, Lemos MF, Pedrosa R (2016) The marine invasive Asparagopsis armata (Harvey, 1855) as source of bioactive valuable compounds antioxidant potential enrichment by vacuum liquid chromatography. Front Mar Sci Conference Abstract:IMMR Int Meet Mar Res. https://doi.org/10.3389/conf.FMARS.2016.04.00067

  • Prabhu MS, Israel A, Palatnik RR, Zilberman D, Golberg A (2020) Integrated biorefinery process for sustainable fractionation of Ulva ohnoi (Chlorophyta): process optimization and revenue analysis. J Appl Phycol 32:2271–2282

    Article  CAS  Google Scholar 

  • Pomin VH, de Souza Mourão PA (2012) Structure versus anticoagulant and antithrombotic actions of marine sulfated polysaccharide. Brazilian Journal of Pharmacognosy 22:921–928

  • PNUE/PAM (2012). Etat de l'environnement marin et côtier de la Méditerranée. PNUE/PAM – Convention de Barcelone. Athène. 92 p

  • Qin et al (2018) Seaweed Bioresources. In: Qin Y (eds) Bioactive Seaweeds for Food Applications. Academic Press, NY, pp 3–24

  • Rebours C, Marinho-Soriano E, Zertuche-González JA, Hayashi L, Vásquez JA, Kradolfer P, Soriano G, Ugarte R, Abreu MH, Bay-Larsen I, Hovelsrud G, Rodven R, Robledo D (2014) Seaweeds: an opportunity for wealth and sustainable livelihood for coastal communities. J Appl Phycol 26:1939–1951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribera MA, Gómez-Garreta A, Gallardo T, Cormaci M, Furnari G et al (1992) Check-list of Mediterranean Seaweeds. I. Fucophyceae (Warming 1884). Bot Mar 35:109–130

  • Roque BM, Brooke CG, Ladau J, Polley T, Marsh LJ, Najafi N, Pandey P, Singh L, Kinley R, Salwen JK, Eloe-Fadrosh E, Kebreab E, Hess M. (2019) Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Anim Microbiome 13:

  • Rosa R, Marques A, Nunes ML (2014) Mediterranean aquaculture in a changing climate. In: Goffredo S., Dubinsky Z. (eds) The Mediterranean Sea. Springer, Dordrecht, pp 605–616

  • Sellimi S, Kadri N, Barragan-Montero V, Laouer H, Hajji M, Nasri M (2014) Fucans from a Tunisian brown seaweed Cystoseira barbata: structural characteristics and antioxidant activity. Int J Biol Macromolec 66:281–288

    Article  CAS  Google Scholar 

  • Sellimi S, Benslima A, Barragan Montero V, Hajji M, Nasri M (2017) Polyphenolic-protein-polysaccharide ternary conjugates from Cystoseira barbata Tunisian seaweed as potential biopreservatives: chemical, antioxidant and antimicrobial properties. Int J Biol Macromolec 105:1375–1383

    Article  CAS  Google Scholar 

  • Sellimi S, Maalej H, Moalla Rekik D, Benslima A, Ksouda G, Hamdi M, Sahnoun Z, Li S, Nasri M, Hajji M (2018) Antioxidant, antibacterial and in vivo wound healing properties of laminaran purified from Cystoseira barbata seaweed. Int J Biol Macromolec 119:633–644

    Article  CAS  Google Scholar 

  • Sghaier YR, Zakhama-Sraieb R, Mouelhi S, Valle VM, C, Ramos-Esplá AA, Astier J. et al (2016) Review of alien marine macrophytes in Tunisia. Mediterr Mar Sci 17:109–123

    Article  Google Scholar 

  • Schiffner V (1926) Beiträge zur Kenntnis der Meeresalgen.II. Ein Beitrag zur algen flora von Tunesien. Hedwigia 66:300–311

  • Shit SC, Shah PM (2014) Edible polymers: challenges and opportunities. J Polym 2014:1–13

    Article  Google Scholar 

  • Shpigel M, Neori A (1996) The integrated culture of seaweed, abalone, fish and clams in modular intensive land-based systems: I. Proportions of size and projected revenues. Aquacult Eng 15:313–326

    Article  Google Scholar 

  • Swanepoel L, Tioti T, Eria T, Tamuera K, Tiitii U, Larson S, Paul N (2020) Supporting women’s participation in developing a seaweed supply chain in Kiribati for health and nutrition. Foods 9:382

    Article  PubMed Central  Google Scholar 

  • Stabili L, Acquaviva MI, Angilè F, Cavallo RA, Cecere E et al (2019) Screening of Chaetomorpha linum lipidic extract as a new potential source of bioactive compounds. Mar Drugs 17:313

  • Troell M, Halling C, Nilsson A, Buschmann AH, Kautsky N, Kautsky L (1997) Integrated marine cultivation of Gracilaria chilensis (Gracilariales, Rhodophyta) and salmon cages for reduced environmental impact and increased economic output. Aquaculture 156:45–61

  • Valderrama D, Cai J, Hishamunda N, Ridler N (2013) Social and economic dimensions of carrageenan seaweed farming. Fisheries and Aquaculture Technical Paper No. 580. FAO, Rome

    Google Scholar 

  • Verlaque M, Langar H, Ben Hmida A, Pergent C, Pergent G (2017) Introduction of a new potential invader into the Mediterranean Sea: the Indo-Pacific Avrainvillea amadelpha (Montagne) A. Gepp & E.S. Gepp (Dichotomosiphonaceae, Ulvophyceae). Cryptogam Algol 38:267–281

    Article  Google Scholar 

  • Vitale F, Genovese G, Bruno F, Castelli G, Piazza M, et al. (2015) Effectiveness of red alga Asparagopsis taxiformis extracts against Leishmania infantum. Open Life Sciences 10:490–496

  • Winberg P (2017) Best practices for the emerging Australian Seaweed Industry: seaweed quality control systems. AgriFutures Australia, Publication No. 17/043

  • Yaich H, Garna H, Bchir B, Besbes S, Paquot M, Richel A, Blecker C, Attia H (2015) Chemical composition and functional properties of dietary fibre extracted by Englyst and Prosky methods from the alga Ulva lactuca collected in Tunisia. Algal Res 9:65–73

    Article  Google Scholar 

  • Yende SR, Harle UN, Chaugule BB (2014) Therapeutic potential and health benefits of Sargassum species. Pharmacogn Rev 8:1–7

  • Yokoya NS, Nauer F, Oliveira MC (2020) Concise review of the genus Hypnea J.V.Lamouroux, 1813. J Appl Phycol 32:3585–3603

  • Zatelli GA, Philippus AC, Falkenberg M (2018) An overview of odoriferous marine seaweeds of the Dictyopteris genus: insights into their chemical diversity, biological potential and ecological roles. Rev Bras Farma 28:243–260

  • Zollmann M, Traugott H, Chemodanov A, Liberzon A, Golberg A (2019) Deep water nutrient supply for an offshore Ulva sp. cultivation project in the Eastern Mediterranean Sea: experimental simulation and modeling. BioEnergy Res 12:1113–1126

  • Zerzeri A, Djellouli AS, Mezgui Y, Ben Hassine OK (2010). Contribution à la caractérisation de la macroflore benthique des régions de Bizerte, Cap Zebib et Raf-Raf (Tunisie, Méditerranée). Rapp Comm int Mer Médit 39:706

Download references

Acknowledgements

L Ktari and L Chebil Ajjabi thank the Ministry of Higher Education and Scientific Research, and the Institution of Scientific Research and Agricultural higher Education (IRESA) for the financial support. C Rebours gratefully acknowledge the Research Council of Norway, the Møre and Romsdal County Council, and Møreforsking AS for their financial support to achieve this review within the PROMAC (244244; www.promac.no) and SEAGREEN (312947) projects. JL Gómez Pinchetti thanks the financial support of the European Territorial Cooperation Program PCT-MAC 2014-2020 through the Project REBECA-CCT (MAC/1.1.B/269). O De Clerck benefits from a European Marine Biological Resource Centre Belgium/Research Foundation—Flanders Project GOH3817N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Ktari.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ktari, L., Chebil Ajjabi, L., De Clerck, O. et al. Seaweeds as a promising resource for blue economy development in Tunisia: current state, opportunities, and challenges. J Appl Phycol 34, 489–505 (2022). https://doi.org/10.1007/s10811-021-02579-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-021-02579-w

Keywords

Navigation