Skip to main content
Log in

Detecting no natural hybridization and predicting range overlap in Saccharina angustata and Saccharina japonica

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Natural hybridization can play a significant role in evolutionary processes and influence the adaptive diversification and speciation of brown seaweeds. However, this phenomenon is as yet unknown in Saccharina kelps. Saccharina angustata and two varieties of Saccharina japonica (S. japonica var. japonica and S. japonica var. diabolica) partly overlap in distribution along the Pacific coast of Hokkaido, which makes them a good model system to study hybridization and introgression among species of the genus Saccharina. Based on 13 highly variable nuclear microsatellites and a mitochondrial marker, we assessed the genetic diversity levels of S. angustata for the first time and populations from Muroran to Shiranuka (western part of the Pacific coast in Hokkaido) exhibited highest genetic diversity. Genetic diversity of S. japonica was higher in S. japonica var. japonica as compared with S. japonica var. diabolica. There was significant genetic differentiation (FST > 0.25, p < 0.05) between S. japonica and S. angustata based on both markers. Moreover, there was poor genetic connectivity and limited interspecific hybridization among these closely related Saccharina species. Ecological niche models projected a northward expansion of both S. japonica and S. angustata under future climate scenarios and a range overlap between two species along the coast of Okhotsk Sea in Kamchatka Peninsula. The interspecific hybridization and genetic diversity among these kelps provide insights for kelp selection and cultivation as well as future conservation strategies of wild stocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo P, Jimenezvalverde A, Meloferreira J, Real R, Alves PC (2012) Parapatric species and the implications for climate change studies: a case study on hares in Europe. Glob Chang Biol 18:1509–1519

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Transact Automat Contr 19:716–723

  • Alberto F, Massa SI, Manent P, Diazalmela E, Arnaudhaond S, Duarte CM, Serrao EA (2008) Genetic differentiation and secondary contact zone in the seagrass Cymodocea nodosa across the Mediterranean-Atlantic transition region. J Biogeogr 35:1279–1294

    Article  Google Scholar 

  • Amanda MS, Gary WS (2015) Evidence for the introduction of the Asian red alga Neosiphonia japonica and its introgression with Neosiphonia harveyi (Ceramiales, Rhodophyta) in the Northwest Atlantic. Mol Ecol 24:5927–5937

    Article  Google Scholar 

  • Ardehed A, Johansson D, Sundqvist L, Schagerstrom E, Zagrodzka Z, Kovaltchouk NA, Bergstrom L, Kautsky L, Rafajlovic M, Pereyra RT, Johannesson K (2016) Divergence within and among seaweed siblings (Fucus vesiculosus and F. radicans) in the Baltic Sea. PLoS One 11:e0161266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, Oxford

  • Assis J, Berecibar E, Claro B, Alberto F, Reed D, Raimondi P, Serrao EA (2017) Major shifts at the range edge of marine forests: the combined effects of climate changes and limited dispersal. Sci Rep 7:44348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Assis J, Araujo MB, Serrao EA (2018a) Projected climate changes threaten ancient refugia of kelp forests in the North Atlantic. Glob Chang Biol 24:e55–e66

    Article  PubMed  Google Scholar 

  • Assis J, Tyberghein L, Bosch S, Verbruggen H, Serrao EA, De Clerck O (2018b) Bio-ORACLE v2.0: extending marine data layers for bioclimatic modelling. Glob Ecol Biogeogr 27:277–284

    Article  Google Scholar 

  • Balakirev ES, Krupnova TN, Ayala FJ (2012) DNA variation in the phenotypically-diverse brown alga Saccharina japonica. BMC Plant Biol 12:108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandelt HJ, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bergstrom L, Tatarenkov A, Johannesson K, Jonsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp nov (Fucales, Phaeophyceae) in the brackish Baltic Sea. J Phycol 41:1025–1038

    Article  CAS  Google Scholar 

  • Bertocci I, Araújo R, Oliveira P, Pinto IS (2015) Potential effects of kelp species on local fisheries. J Appl Ecol 52:e0161266

    Article  Google Scholar 

  • Binks RM, Byrne M, McMahon K, Pitt G, Murray K, Evans RD (2019) Habitat discontinuities form strong barriers to gene flow among mangrove populations, despite the capacity for long-distance dispersal. Divers Distrib 25:298–309

    Article  Google Scholar 

  • Bolton JJ (2010) The biogeography of kelps (Laminariales, Phaeophyceae): a global analysis with new insights from recent advances in molecular phylogenetics. Helgol Mar Res 64:263–279

    Article  Google Scholar 

  • Borlongan IA, Maeno Y, Kozono J, Endo H, Shimada S, Nishihara GN, Terada R (2019) Photosynthetic performance of Saccharina angustata (Laminariales, Phaeophyceae) at the southern boundary of subarctic kelp distribution in Japan. Phycologia 58:300–309

    Article  CAS  Google Scholar 

  • Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026

    Article  CAS  PubMed  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF et al (eds) Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University, Cambridge pp 1029-1136

  • Coyer JA, Hoarau G, Stam WT, Olsen JL (2007) Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus distichus and F. serratus. J Evol Biol 16:3606–3616

    Google Scholar 

  • Druehl LD, Collins JD, Lane CE, Saunders GW (2005) An evaluation of methods used to assess intergeneric hybridization in kelp using Pacific Laminariales (Phaeophyceae). J Phycol 41:250–262

    Article  CAS  Google Scholar 

  • Earl DA, Vonholdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Engel CR, Daguin C, Serrão EA (2010) Genetic entities and mating system in hermaphroditic Fucus spiralis and its close dioecious relative F. vesiculosus (Fucaceae, Phaeophyceae). Mol Ecol 14:2033–2046

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

    Article  Google Scholar 

  • Fithian W, Elith J, Hastie T, Keith DA (2015) Bias correction in species distribution models: pooling survey and collection data for multiple species. Methods Ecol Evol 6:424–438

    Article  PubMed  Google Scholar 

  • Franco JN, Tuya F, Bertocci I, Laura R, Brezo M, Isabel SP, Arenas F (2018) The ‘golden kelp’ Laminaria ochroleuca under global change: integrating multiple eco-hysiological responses with species distribution models. J Ecol 106:47–58

    Article  Google Scholar 

  • Gao X, Endo H, Agatsuma Y (2014) Effect of increased seawater temperature on biomass, growth, and maturation of Saccharina japonica near its southern limit in northern Japan. J Appl Phycol 27:1263–1270

    Article  Google Scholar 

  • Gao X, Endo H, Nagaki M, Agatsuma Y (2017) Interactive effects of nutrient availability and temperature on growth and survival of different size classes of Saccharina japonica (Laminariales, Phaeophyceae). Phycologia 56:253–260

    Article  CAS  Google Scholar 

  • Gonzalez A, Beltran J, Hiriart-Bertrand L, Flores V, de Reviers B, Correa JA, Santelices B (2012) Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). J Phycol 48:1153–1165

    Article  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Hall AT (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 95-98

  • Hasegawa YJ (1962) An ecological study of Laminaria angustata Kjellman on the coast of Hidaka Prov., Hokkaido. Bull Hokkaido Reg Fish Lab 24:116–138

    Google Scholar 

  • Hijmans RJ (2015) R package raster: Geographic data analysis and modeling,version 2.3–40. http://CRAN.R-project.org/package=raster. Accessed 16 June 2020

  • Hoarau G, Coyer JA, Giesbers MC, Jueterbock A, Olsen JL (2015) Pre-zygotic isolation in the macroalgal genus Fucus from four contact zones spanning 100-10 000 years: a tale of reinforcement? R Soc Open Sci 2:140538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world's marine ecosystems. Science 328:1523–1528

    Article  CAS  PubMed  Google Scholar 

  • Hu ZM, Zhang J, Lopez-Bautista J, Duan DL (2013) Asymmetric genetic exchange in the brown seaweed Sargassum fusiforme (Phaeophyceae) driven by oceanic currents. Mar Biol 160:1407–1414

    Article  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Valverde A (2012) Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob Ecol Biogeogr 21:498–507

    Article  Google Scholar 

  • Jueterbock A, Tyberghein L, Verbruggen H, Coyer JA, Olsen JL, Hoarau G (2013) Climate change impact on seaweed meadow distribution in the North Atlantic rocky intertidal. Ecol Evol 3:1356–1373

    Article  PubMed  PubMed Central  Google Scholar 

  • Jueterbock A, Smolina I, Coyer JA, Hoarau G (2016) The fate of the Arctic seaweed Fucus distichus under climate change: an ecological niche modeling approach. Ecol Evol 6:1712–1724

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawashima S (2012) Morphological and taxonomy of the Laminariaceous algae in cold water area of Japan (in Japanese). Oya Nisan Publisher, pp 159–206

  • Kozhenkova SI (2009) Retrospective analysis of the marine flora of Vostok Bay, Sea of Japan. Russ J Mar Biol 35:263–278

    Article  Google Scholar 

  • Kraan S, Guiry MD (2000) Molecular and morphological character inheritance in hybrids of Alaria esculenta and A. praelonga (Alariaceae, Phaeophyceae). Phycologia 39:554–559

    Article  Google Scholar 

  • Krosby M, Wilsey CB, Mcguire JL, Duggan JM, Nogeire TM, Heinrichs JA, Tewksbury JJ, Lawler JJ (2015) Climate-induced range overlap among closely related species. Nat Clim Change 5:883–886

  • Lane CE, Mayes C, Druehl LD, Saunders GW (2006) A multi-gene molecular investigation of the kelp (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J Phycol 42:493–512

    Article  CAS  Google Scholar 

  • Li JJ, Hu ZM, Gao X, Sun ZM, Choi HG, Duan DL, Endo H (2017) Oceanic currents drove population genetic connectivity of the brown alga Sargassum thunbergii in the north-West Pacific. J Biogeogr 44:230–242

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Müller R, Laepple T, Bartsch I, Wiencke C (2009) Impact of oceanic warming on the distribution of seaweeds in polar and cold-temperate waters. Bot Mar 52:617–638

    Article  Google Scholar 

  • Neiva J, Pearson GA, Valero M, Serrão EA (2012) Drifting fronds and drifting alleles: range dynamics, local dispersal and habitat isolation shape the population structure of the estuarine seaweed Fucus ceranoides. J Biogeogr 39:1167–1178

    Article  Google Scholar 

  • Neiva J, Assis J, Fernandes F, Pearson GA, Serrao EA, Maggs C (2014) Species distribution models and mitochondrial DNA phylogeography suggest an extensive biogeographical shift in the high-intertidal seaweed Pelvetia canaliculata. J Biogeogr 41:1137–1148

    Article  Google Scholar 

  • Neiva J, Serrao EA, Anderson L, Raimondi PT, Martins N, Gouveia L, Paulino C, Coelho NC, Miller KA, Reed DC, Ladah LB, Pearson GA (2017) Cryptic diversity, geographical endemism and allopolyploidy in NE Pacific seaweeds. BMC Evol Biol 17:30

    Article  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pereyra RT, Huenchunir C, Johansson D, Forslund H, Kautsky L, Jonsson PR, Johannesson K (2013) Parallel speciation or long-distance dispersal? Lessons from seaweeds (Fucus) in the Baltic Sea. J Evol Biol 26:1727–1737

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Dudik MS (2004) A maximum entropy approach to species distribution modeling. Proceedings of the 21 International Conference on Machine Learning 83:655-662

  • Phillips SJ, Anderson RP, Dudik M, Schapire RE, Blair ME (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raybaud V, Beaugrand G, Goberville E, Delebecq G, Destombe C, Valero M, Davoult D, Morin P, Gevaert F (2013) Decline in kelp in West Europe and climate. PLoS One 8:e66044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Sbrocco E (2014) Paleo-MARSPEC : gridded ocean climate layers for the mid- Holocene and Last Glacial Maximum. Ecology 95:1710

    Article  Google Scholar 

  • Selivanova ON, Zhigadlova GG, Hansen GI (2007) Revision of the systematics of algae in the order Laminariales (Phaeophyta) from the Far-Eastern seas of Russia on the basis of molecular-phylogenetic data. Russ J Mar Biol 33:278–289

    Article  Google Scholar 

  • Storey JD (2002) A direct approach to false discovery rates. J R Stat Soc B 64:479–498

    Article  Google Scholar 

  • Sudo K, Watanabe K, Yotsukura N, Nakaoka M (2020) Predictions of kelp distribution shifts along the northern coast of Japan. Ecol Res 35:47–60

    Article  Google Scholar 

  • Takao S, Kumagai NH, Yamano H, Fujii M, Yamanaka Y (2015) Projecting the impacts of rising seawater temperatures on the distribution of seaweeds around Japan under multiple climate change scenarios. Ecol Evol 5:213–223

    Article  PubMed  Google Scholar 

  • Takezaki N, Nei M, Tamura K (2010) POPTREE2: software for constructing population trees from allele frequency data and computing other population statistics with Windows interface. Mol Biol Evol 27:747–752

    Article  CAS  PubMed  Google Scholar 

  • Tegner MJ, Dayton PK (2000) Ecosystem effects of fishing in kelp forest communities. ICES J Mar Sci 57:579–589

    Article  Google Scholar 

  • Terada R, Abe M, Abe T, Aoki M, Dazai A, Endo H, Kamiya M, Kawai H, Kurashima A, Motomura T, Murase N, Sakanishi Y, Shimabukuro H, Tanaka J, Yoshida G, Aoki M (2019) Japan's nationwide long-term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: ten-year overview and future perspectives. Phycol Res. https://doi.org/10.1111/pre.12395

  • Tseng CK (2001) Algal biotechnology industries and research activities in China. J Appl Phycol 13:375–380

    Article  Google Scholar 

  • Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, De Clerck O (2012) Bio-ORACLE: a global environmental dataset for marine species distribution modelling. Glob Ecol Biogeogr 21:272–281

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Wallace AL, Klein AS, Mathieson AC (2004) Determining the affinities of salt marsh fucoids using microsatellite markers: evidence of hybridization and introgression between two species of Fucus (Phaeophyta) in a Maine estuary. J Phycol 40:1013–1027

    Article  CAS  Google Scholar 

  • Wang XL, Yao JT, Zhang J, Duan DL (2020) Status of genetic studies and breeding of Saccharina japonica in China. J Oceanol Limnol 38:1064–1079

    Article  CAS  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers Distrib 20:334–343

    Article  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Yotsukura N, Shimizu T, Katayama T, Druehl LD (2010a) Mitochondrial DNA sequence variation of four Saccharina species (Laminariales, Phaeophyceae) growing in Japan. J Appl Phycol 22:243–251

    Article  CAS  Google Scholar 

  • Yotsukura N, Nagai K, Kimura H, Morimoto K (2010b) Seasonal changes in proteomic profiles of Japanese kelp: Saccharina japonica (Laminariales, Phaeophyceae). J Appl Phycol 22:443–451

    Article  CAS  Google Scholar 

  • Zhang QS, Tang XX, Cong YZ, Qu SC, Luo SJ, Yang GP (2007) Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J Appl Phycol 19:303–311

    Article  Google Scholar 

  • Zhang J, Yao JT, Sun ZM, Fu G, Galanin DA, Nagasato C, Motomura T, Hu ZM, Duan DL (2015) Phylogeographic data revealed shallow genetic structure in the kelp Saccharina japonica (Laminariales, Phaeophyta). BMC Evol Biol 15:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Wang XL, Yao JT, Li QY, Liu FL, Yotsukura N, Krupnova TN, Duan DL (2017) Effect of domestication on the genetic diversity and structure of Saccharina japonica populations in China. Sci Rep 7:42158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Yao JT, Hu ZM, Jueterbock A, Yotsukura N, Krupnova TN, Nagasato C, Duan DL (2019a) Phylogeographic diversification and postglacial range dynamics shed light on the conservation of the kelp Saccharina japonica. Evol Appl 12:791–803

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang XL, Yao JT, Yotsukura N, Duan DL (2019b) Screening of polymorphic microsatellites and their application for Saccharina angustata and Saccharina longissima population genetic analysis. J Appl Phycol 31:3295–3301

    Article  Google Scholar 

Download references

Acknowledgments

We thank Zhongmin Sun, Gang Fu, and Jing Wang for their assistance in kelp collections.

Funding

This study was supported by the National Natural Science Foundation of China (31900279), Shandong Provincial Natural Science Foundation (ZR2019BC024), Bilateral Joint Research Project between China and Japan (2017YFE0130900), and the Foundation for Science and Technology (FCT) of Portugal through the project UID/Multi/04326/2020 and the transitional norm (DL57/2016/ CP1361/CT0035).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianting Yao or Delin Duan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Yotsukura, N., Jueterbock, A. et al. Detecting no natural hybridization and predicting range overlap in Saccharina angustata and Saccharina japonica. J Appl Phycol 33, 693–702 (2021). https://doi.org/10.1007/s10811-020-02300-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02300-3

Keywords

Navigation