Skip to main content

Advertisement

Log in

Combined effects of elevated temperature and pCO2 on the production of DMSP and DMS in the culture of Amphidinium carterae

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Ocean acidification and global warming might affect the production of dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS), and dissolved acrylic acid (AAd) by marine phytoplankton. Monoculture incubation experiments were conducted with the dinoflagellate Amphidinium carterae to investigate the effects of elevated CO2 concentration and temperature on growth and productions of DMSP, DMS, and AAd. Two pCO2 levels were set as 400 and 1000 μatm, and two temperatures were set as 20 and 23 °C. The growth of A. carterae remained unaffected by an increase of CO2 to 1000 μatm and a rise of temperature of 3 °C. Moreover, the elevated CO2 concentration and temperature had no significant effects on the concentrations and cell-normalized concentrations of DMSP, DMS, and AAd. No additive or synergistic effects of elevated CO2 concentration and temperature on A. carterae were observed, indicating that A. carterae was insensitive to elevated CO2 and temperature in short time incubation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Archer SD, Kimmance SA, Stephens JA, Hopkins FE, Bellerby RGJ, Schulz KG, Piontek J, Engel A (2013) Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 10:1893–1908

    Article  CAS  Google Scholar 

  • Arnold H, Kerrison H, Steinke M (2013) Interacting effects of ocean acidification and warming on growth and DMS-production in the haptophyte coccolithophore Emiliania huxleyi. Glob Chang Biol 19:1007–1016

    Article  CAS  PubMed  Google Scholar 

  • Avgoustidi V (2006) Dimethyl sulphide production in a high CO2 world. PhD dissertation, University of East Anglia, Norwich

  • Avgoustidi V, Nightingale PD, Joint I, Steinke M, Turner SM, Hopkins FE, Liss PS (2012) Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies. Environ Chem 9:399–404

    Article  CAS  Google Scholar 

  • Bajt O, Sket B, Faganeli J (1997) The aqueous photochemical transformation of acrylic acid. Mar Chem 58:255–259

    Article  CAS  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microalgal photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Bénard R, Levasseur M, Scarratt M, Michaud S, Starr M, Mucci A, Ferreyra G, Gosselin M, Tremblay J-É, Lizotte M, Yang G-P (2019) Contrasting effects of acidification and warming on dimethylsulfide concentrations during a temperate estuarine fall bloom mesocosm experiment. Biogeosciences 16:1167–1185

    Article  CAS  Google Scholar 

  • Berge T, Daugbjerg N, Andersen BB, Hansen PJ (2010) Effect of lowered pH on marine phytoplankton growth rates. Mar Ecol Prog Ser 416:79–91

    Article  Google Scholar 

  • Bopp L, Mofray P, Aumont O, Dufresne JL, Treut HL, Terray C (2001) Potential impact of climate change on marine export production. Global Biogeochem Cycl 15:81–99

    Article  CAS  Google Scholar 

  • Boyd PW, Rynearson TA, Armstrong EA, Fu F, Hayashi K, Hu Z, Hutchins DA, Kudela RM, Litchman E, Mulholland MR, Passow U, Strzepek RF, Whittaker KA, Yu E, Thomas MK (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8:e63091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyd PW, Collins S, Dupont S, Fabricius K, Gattuso J-P, Havenhand J, Hutchins DA, Riebesell U, Rintoul MS, Vichi M, Biswas H, Ciotti A, Gao K, Gehlen M, Hurd CL, Kurihara H, McGraw CM, Navarro JN, Nilsson GE, Passow U, Pörtner H-O (2018) Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—a review. Glob Chang Biol 24:2239–2261

    Article  PubMed  Google Scholar 

  • Brand LE (1982) Genetic variability and spatial patterns of genetic differentiation in the reproductive rates of the marine coccolithophores Emiliania huxleyi and Gephyrocapsa oceanica. Limnol Oceanogr 27:236–245

    Article  Google Scholar 

  • Cai WJ, Wang YC (1998) The chemistry, fluxes, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol Oceanogr 4:657–668

    Article  Google Scholar 

  • Charlson RJ, Lovelock JE, Andreae MO, Wakeham SG (1987) Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661

    Article  CAS  Google Scholar 

  • Chen SW, Gao KS (2011) Solar ultraviolet radiation and CO2-induced ocean acidification interacts to influence the photosynthetic performance of the red tide alga Phaeocystis globosa (Prymnesiophyceae). Hydrobiologia 675:105–117

    Article  CAS  Google Scholar 

  • Dacey JWH, Blough NV (1987) Hydroxide decomposition of dimethylsulfoniopropionate to form dimethylsulfide. Geophys Res Lett 12:1246–1249

    Article  Google Scholar 

  • Daufresne M, Lengfellnera K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci U S A 106:12788–12793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) + 1/2H2(g) = Ag(s) + HCl(aq), and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J Chem Thermodyn 2:113–127

    Article  Google Scholar 

  • Dickson AG, Millero FJA (1987) Comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    Article  CAS  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish B-NOAA 70:1063–1085

    Google Scholar 

  • Evans C, Malin G, Wilson WH, Liss PS (2006) Infectious titres of Emiliania huxleyi virus 86 are reduced by exposure to millimolar dimethyl sulfide and acrylic acid. Limnol Oceanogr 51:2468–2471

    Article  CAS  Google Scholar 

  • Evans C, Kadner SV, Darroch LJ (2007) The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: an Emiliania huxleyi culture study. Limnol Oceanogr 52:1036–1045

    Article  Google Scholar 

  • Feng Y, Warner ME, Zhang Y, Sun J, Fu F-X, Rose JM, Hutchins DA (2008) Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur J Phycol 43:87–98

    Article  CAS  Google Scholar 

  • Feng YY, Hare CE, Leblanc K, Rose JM, Zhang Y, DiTullio GR, Lee PA, Wilhelm SW, Rowe JM, Sun J, Nemcek N, Gueguen C, Passow U, Benner I, Brown C, Hutchins DA (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. I. The phytoplankton community and biogeochemical response. Mar Ecol Prog Ser 388:13–25

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fu FX, Marke W, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Gao K, Aruga Y, Ishihara T, Akano T, Kiyohara M (1991) Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J Appl Phycol 3:355–362

    Article  CAS  Google Scholar 

  • Gao K, Zhang Y, Häder DP (2018) Individual and interactive effects of ocean acidification, global warming, and UV radiation on phytoplankton. J Appl Phycol 30:743–759

    Article  CAS  Google Scholar 

  • Garren M, Son K, Raina J-B, Rusconi R, Menolascina F, Shapiro OH, Tout J, Bourne DG, Seymour JR, Stocker R (2014) A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007

    Article  CAS  PubMed  Google Scholar 

  • Gibson JAE, Swadling KM, Burton HR (1996) Acrylate and dimenthylsulfoniopropionate (DMSP) concentrations during an Antarctic phytoplankton bloom. In: Kiene RP, Visscher PT, Keller MD, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York, pp 213–222

    Chapter  Google Scholar 

  • Guillard RRL (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Halac S, Villafañe V, Gonçalves R, Helbling E (2014) Photochemical responses of three marine phytoplankton species exposed to ultraviolet radiation and increased temperature: role of photoprotective mechanisms. J Photochem Photobiol B 141:217–227

    Article  CAS  PubMed  Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Article  Google Scholar 

  • Han XT, Yan T, Zou JZ, Yu ZM (2004) Morphological features and growth characteristics of the dinoflagellate Amphidinium carterae Hulburt. Oceanol Limnol Sin 35:279–283 (in Chinese with English abstract)

    Google Scholar 

  • Hare CE, Leblanc K, DiTullio GR, Kudela RM, Zhang Y, Lee PA, Riseman S, Hutchins DA (2007) Consequences of increased temperature and CO2 for phytoplankton community structure in the Bering Sea. Mar Ecol Prog Ser 352:9–16

    Article  CAS  Google Scholar 

  • Hopkins FE, Archer SD (2014) Consistent increase in dimethylsulphide (DMS) in response to high CO2 in five shipboard bioassays from contrasting NW European waters. Biogeosciences 11:4925–4940

    Article  Google Scholar 

  • Huertas IE, Rouco M, López-Rodas V, Costas E (2011) Warming will affect phytoplankton differently: evidence through a mechanistic approach. Proc Biol Sci 278:3534–3543

    Article  PubMed  PubMed Central  Google Scholar 

  • Hwang DF, Lu YH (2000) Influence of environmental and nutritional factors on growth, toxicity, and toxin profile of dinoflagellate Alexandrium minutum. Toxicon 38:1491–1503

    Article  CAS  PubMed  Google Scholar 

  • Hyun B, Choi K-H, Jang P-G, Jang M-C, Lee W-J, Moon C-H, Shin K (2014) Effects of increased CO2 and temperature on the growth of four diatom species (Chaetoceros debilis, Chaetoceros didymus, Skeletonema costatum and Thalassiosira nordenskioeldii) in laboratory experiments. J Env Sci Internat 23:1003–1012

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (eds) Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. IPCC, Geneva, p 151

    Google Scholar 

  • Karsten U, Kirst GO, Wiencke C (1992) Dimethylsulphoniopropionate (DMSP) accumulation in green macioalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biol 12:603–607

    Article  Google Scholar 

  • Keller MD (1989) Dimethyl sulfide production and marine phytoplankton: the importance of species composition and cell size. Biol Oceanogr 6:375–382

    Google Scholar 

  • Keller MD, Korjeff-Bellows W (1996) Physiological aspects of the production of dimethylsulfoniopropionate (DMSP) by marine phytoplankton. In: Kiene RP, Visscher P, Keller M, Kirst GO (eds) Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum Press, New York, pp 131–142

    Chapter  Google Scholar 

  • Keller MD, Bellows WK, Guillard RRL (1989) Dimethyl sulfide production in marine phytoplankton. In: Saltzman ES, Cooper WJ (eds) Biogenic sulfur in the environment. American Chemical Society, Washington DC, pp 167–182

    Chapter  Google Scholar 

  • Keller MD, Kiene RP, Matrai PA, Bellows WK (1999) Production of glycine betaine and dimethylsulfoniopropionate in marine phytoplankton. II. N-limited chemostat cultures. Mar Biol 135:249–257

    Article  CAS  Google Scholar 

  • Kerrison P, Suggett DJ, Hepburn LJ, Steinke M (2012) Effect of elevated pCO2 on the production of dimethylsulphoniopropionate (DMSP) and dimethylsulphide (DMS) in two species of Ulva (Chlorophyceae). Biogeochemistry 110:5–16

    Article  CAS  Google Scholar 

  • Kiene RP, Service SK (1991) Decomposition of dissolved DMSP and DMS in estuarine waters: dependence on temperature and substrate concentration. Mar Ecol Prog Ser 76:1–11

    Article  CAS  Google Scholar 

  • Kiene RP, Linn LJ, Bruton JA (2000) New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224

    Article  CAS  Google Scholar 

  • Kim J-M, Lee K, Yang EJ, Shin K, Noh JH, Park K-T, Hyun B, Jeong H-J, Kim J-H, Kim KY, Kim M, Kim H-C, Jang P-G, Jang M-C (2010) Enhanced production of oceanic dimethylsulfide resulting from CO2-induced grazing activity in a high CO2 world. Environ Sci Technol 44:8140–8143

    Article  CAS  PubMed  Google Scholar 

  • Kottmeier DM, Rokitta SD, Rost B (2016) Acidification, not carbonation, is the major regulator of carbon fluxes in the coccolithophore Emiliania huxleyi. New Phytol 211:126–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, Penna A (2012) Intraspecific variability in the response of bloom forming marine microalgae to changed climate conditions. Ecol Evol 2:1195–1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudela RM, Cochlan WP, Peterson TD, Trick CW (2006) Impacts on phytoplankton biomass and productivity in the Pacific Northwest during the warm ocean conditions of 2005. Geophys Res Lett 33:L22S06

    Article  Google Scholar 

  • Lana A, Bell TG, Simó R, Vallina SM, Ballabrera-Poy J, Kettle AJ, Dachs J, Bopp L, Saltzman ES, Stefels J, Johnson JE, Liss PS (2011) An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Global Biogeochem Cycles 25:GB1004

    Article  CAS  Google Scholar 

  • LaRoche J, Rost B, Engel A (2010) Bioassays, batch culture and chemostat experimentation. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J (eds) Guide to best practices in ocean acidification research and data reporting. Luxembourg Press, Belgium, pp 81–94

    Google Scholar 

  • Lee PA, Mora SJD, Gosselin M, Levasseur M, Michel C (2001) Particulate dimethylsulfoxide in arctic sea-ice algal communities: the cryoprotectant hypothesis revisited. J Phycol 37:488–499

    Article  Google Scholar 

  • Lee PA, Rudisill JR, Neeley AR, Maucher JM, Hutchins DA, Feng Y, Hare CE, Leblanc K, Rose JM, Wilhelm SW, Rowe JM, DiTullio GR (2009) Effects of increased pCO2 and temperature on the North Atlantic spring bloom. III. Dimethylsulfoniopropionate. Mar Ecol Prog Ser 388:41–49

    Article  CAS  Google Scholar 

  • Levasseur M (2013) Impact of Arctic meltdown on microbial cycling of sulphur. Nat Geosci 6:691

    Article  CAS  Google Scholar 

  • Li P-F, Yang G-P, Zhang J, Levasseur M, Liu C-Y, Sun J, Yang W (2018) Impacts of elevated pCO2 on trace gas emissions in two microalgae: Phaeocystis globosa and Nitzschia closterium. Environ Chem 14:425–441

    Article  CAS  Google Scholar 

  • Listmann L, LeRoch M, Schlüter L, Thomas MK, Reusch TB (2016) Swift thermal reaction norm evolution in a key marine phytoplankton species. Evol Appl 9:1156–1164

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Kieber DJ, Yang GP, Xue C, Wang LL, Li HH (2014) Evidence for the mutual effects of dimethylsulfoniopropionate and nitric oxide during the growth of marine microalgae. Nitric Oxide 42:54–61

    Article  PubMed  CAS  Google Scholar 

  • Lomas MW, Glibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572

    Article  CAS  Google Scholar 

  • Mandal SK, Singh RP, Patel V (2011) Isolation and characterization of exopolysaccharide secreted by a toxic dinoflagellate, Amphidinium carterae Hulburt 1957 and its probable role in harmful algal blooms (HABs). Microb Ecol 62:518–527

    Article  CAS  PubMed  Google Scholar 

  • Matrai PA, Keller MD (1994) Total organic sulfur and dimethylsulfoniopropionate in marine phytoplankton: intracellular variations. Mar Biol 119:61–68

    Article  CAS  Google Scholar 

  • McLenon AL, Ditullio GR (2012) Effects of increased temperature on dimethylsulfoniopropionate (DMSP) concentration and methionine synthase activity in Symbiodinium microadriaticum. Biogeochemistry 110:17–29

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in the seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

  • Milner S, Langer G, Grelaud M, Ziveri P (2016) Ocean warming modulates the effects of acidification on Emiliania huxleyi calcification and sinking. Limnol Oceanogr 61:1322–1336

    Article  CAS  Google Scholar 

  • Moran XA, Lopez-Urrutia A, Calvo-Diaz A, Li WKW (2010) Increasing importance of small phytoplankton in a warmer ocean. Glob Chang Biol 16:1137–1144

    Article  Google Scholar 

  • Noiri Y, Kudo I, Kiyosawa H, Nishioka J, Tsuda A (2005) Influence of iron and temperature on growth, nutrient utilization ratios and phytoplankton species composition in the western subarctic Pacific Ocean during the SEEDS experiment. Prog Oceanogr 64:149–166

    Article  Google Scholar 

  • Noordkamp DJB, Schotten M, Gieskes WWC (1998) High acrylate concentrations in the mucus of Phaeocystis globosa colonies. Aquat Microb Ecol 1:45–52

    Article  Google Scholar 

  • Noordkamp DJB, Gieskes WWC, Gottschal JC, Forney LJ, Rijssel MV (2000) Acrylate in phaeocystis colonies does not affect the surrounding bacteria. J Sea Res 43:287–296

    Article  CAS  Google Scholar 

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7:e1000178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty first century and its impact on calcifying organisms. Nature 437:681–686

    Article  CAS  PubMed  Google Scholar 

  • Park K-T, Lee K, Shin K, Yang EJ, Hyun B, Kim J-M, Noh JH, Kim M, Kong B, Chio DC, Jang P-G, Jeong HJ (2014) Direct linkage between dimethylsulfide production and microzooplankton grazing, resulting from prey composition change under high partial pressure of carbon dioxide conditions. Environ Sci Technol 48:4750–4756

    Article  CAS  PubMed  Google Scholar 

  • Pierrot DE, Lewis E, Wallace DWR (2006) MS Excel program developed for CO2 system calculations. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy. Available at http://cdiac.ornl.gov/ftp/co2sys. Accessed 26 Nov 2019

  • Quinn PK, Bates TS (2011) The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature 480:51

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110:441–461

    Article  CAS  Google Scholar 

  • Riebesell U (2004) Effects of CO2 enrichment on marine phytoplankton. J Oceanogr 60:719–729

    Article  CAS  Google Scholar 

  • Rijssel MV, Gieskes WWC (2002) Temperature, light, and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi, (Prymnesiophyceae). J Sea Res 48:17–27

    Article  Google Scholar 

  • Rost B, Riebesell U, Burkhardt S (2003) Carbon acquisition of bloom-forming marine phytoplankton. Limnol Oceanogr 48:55–67

    Article  Google Scholar 

  • Schippers P, Lürling M, Sheffer M (2004) Increase of atmospheric CO2 promotes phytoplankton productivity. Ecol Lett 7:446–451

    Article  Google Scholar 

  • Schlüter L, Lohbeck KT, Gutowska MA, Gröger JP, Riebesell U, Reusch TB (2014) Adaptation of a globally important coccolithophore to ocean warming and acidification. Nat Clim Chang 4:1024–1030

    Article  CAS  Google Scholar 

  • Seiburth JM (1960) Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132:676–677

    Article  Google Scholar 

  • Seymour JR, Simó R, Ahmed T, Stocker R (2010) Chemoattraction to dimethylsulfoniopropionate throughout the marine microbial food web. Science 329:342

    Article  CAS  PubMed  Google Scholar 

  • Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16:287–294

    Article  PubMed  Google Scholar 

  • Simó R, Vila-Costa M, Alonso-Saéz L, Cardelús C, Guadayol Ó, Vázquez-Dominguez E, Gasol JM (2009) Annual DMSP contribution to S and C fluxes through phytoplankton and bacterioplankton in a NW Mediterranean coastal site. Aquat Microb Ecol 57:43

    Article  Google Scholar 

  • Slezak DM, Puskaric S, Herndl GJ (1994) Potential role of acrylic acid in bacterioplankton communities in the sea. Mar Ecol Prog Ser 105:191–197

    Article  CAS  Google Scholar 

  • Spielmeyer A, Pohnert G (2012) Influence of temperature and elevated carbon dioxide on the production of dimethylsulfoniopropionate and glycine betaine by marine phytoplankton. Mar Environ Res 73:62–69

    CAS  PubMed  Google Scholar 

  • Stefels J (2000) Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. J Sea Res 43:183–197

    Article  CAS  Google Scholar 

  • Stockwell DA, Whitledge TE, Zeeman SI, Coyle KO, Napp JM, Brodeur RD, Pinchuk AI, Hunt GL (2001) Anomalous conditions in the south-eastern Bering Sea, 1997: nutrients, phytoplankton and zooplankton. Fish Oceanogr 10:99–116

    Article  Google Scholar 

  • Strecker AL, Cobb TP, Vinebrooke RD (2004) Effects of experimental greenhouse warming on phytoplankton and zooplankton communities in fishless alpine ponds. Limnol Oceanogr 49:1182–1190

    Article  CAS  Google Scholar 

  • Strom S, Wolfe G, Holmes J, Stecher H, Shimeneck C, Lambert S, Moreno E (2003) Chemical defense in the microplankton I: feeding and growth rates of heterotrophic protists on the DMS producing phytoplankter Emiliania huxleyi. Limnol Oceanogr 48:217

    Article  CAS  Google Scholar 

  • Sunda W, Kieber DJ, Kiene RP, Huntsman S (2002) An antioxidant function for DMSP and DMS in marine algae. Nature 418:317

    Article  CAS  PubMed  Google Scholar 

  • Taylor FGR, Pollingher U (1987) Ecology of dinoflagellates. In: Taylor FGR (ed) Biology of dinoflagellates. Blackwell Scientific, Oxford, pp 398–502

    Google Scholar 

  • Vairavamurthy A, Andreae MO, Iverson RL (1985) Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol Oceanogr 30:59–70

  • Webb AL, Malin G, Hopkins FE, Ho KL, Riebesell U, Schulz KZ, Larsen A, Liss PS (2015) Ocean acidification has different effects on the production of dimethylsulfide and dimethylsulfoniopropionate measured in cultures of Emiliania huxleyi and a mesocosm study: a comparison of laboratory monocultures and community interactions. Environ Chem 13:314–329

    Article  CAS  Google Scholar 

  • Webb AL, Leedham-Elvidge E, Hughes C, Hopkins FE, Malin G, Bach LT, Schulz K, Crawfurd K, Brussaard CPD, Stuhr A, Riebesell U, Liss PS (2016) Effect of ocean acidification and elevated fCO2 on trace gas production by a Baltic Sea summer phytoplankton community. Biogeosciences 13:4595–4613

    Article  CAS  Google Scholar 

  • Wingenter OW, Haase KB, Zeigler M, Blake DR, Rowland FS, Sive BC, Paulino A, Thyrhaug R, Larsen A, Schulz K, MeyerhÖfer M, Riebesell U (2007) Unexpected consequences of increasing CO2 and ocean acidity on marine production of DMS and CH2ClI: potential climate impacts. Geophys Res Lett 34:L05710

    Article  Google Scholar 

  • Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999) Direct effects of CO2 concentration on growth and isotopic composition of marine plankton. Tellus B 51:461–476

    Article  Google Scholar 

  • Wu HY, Zou DH, Gao KS (2008) Impacts of increased atmospheric CO2, concentration on photosynthesis and growth of micro- and macro-algae. Sci China C 51:1144–1150

    Article  CAS  Google Scholar 

  • Wu Y, Gao K, Riebesell U (2010) CO2-induced seawater acidification affect s physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7:2915–2923

    Article  CAS  Google Scholar 

  • Wu X, Gao G, Giordano M, Gao K (2012) Growth and photosynthesis of a diatom grown under elevated CO2 in the presence of solar UV radiation. Fundam Appl Limnol 180:279–290

    Article  CAS  Google Scholar 

  • Yang GP, Levasseur M, Michaud S, Scarratt M (2005) Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring. Mar Chem 96:315–329

    Article  CAS  Google Scholar 

  • Yang GP, Zhang HH, Su LP, Zhou LM (2009) Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer. Atmos Environ 43:2196–2203

    Article  CAS  Google Scholar 

  • Yang GP, Zhang HH, Zhou LM, Yang J (2011) Temporal and spatial variations of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the East China Sea and the Yellow Sea. Cont Shelf Res 31:1325–1335

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 41576073, 41676065, 41176062), the National Key Research and Development Program of China (Grant No. 2016YFA0601301), and the Fundamental Research Funds for the Central Universities (No. 201762032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Peng Yang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, PF., Yang, GP. & Liu, CY. Combined effects of elevated temperature and pCO2 on the production of DMSP and DMS in the culture of Amphidinium carterae. J Appl Phycol 32, 1063–1074 (2020). https://doi.org/10.1007/s10811-020-02058-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02058-8

Keywords

Navigation