Skip to main content

Advertisement

Log in

Field evaluations of agrochemical toxicity to cyanobacteria in rice field ecosystem: a review

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The adverse effects of chemical nitrogen fertilizers affecting soil fertility, water pollution and native microorganisms, particularly cyanobacteria, in wetland rice cultivation have drawn global attention towards the use of alternative sources like N2-fixing cyanobacteria as a biofertilizer for sustainable rice farming. Although chemical nitrogen fertilizers are extensively used for obtaining higher rice yield, they are likely to have a deleterious effect on the growth and N2-fixation of diazotrophs, including cyanobacteria. In addition, biocides (herbicides and insecticides) are widely being used in rice cultivation for optimizing crop yield, but these chemicals also affects non-target organisms adversely. There are several reports indicating impacts of these agrochemicals on cyanobacteria, but most such studies were carried out under laboratory conditions. This article reviews information from different field evaluations on the impact of agrochemicals on cyanobacteria along with rice crop in wetland rice field ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari SP (1989) Effect of pesticides on growth, photosynthetic oxygen evolution and nitrogen fixation of Westiellopsis prolifica. J Gen Appl Microbiol 35:319–325

    Google Scholar 

  • Agrawal C, Sen S, Singh S, Rai S, Singh PK, Singh VK, Rai LC (2014) Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J Proteome 96:271–290

    CAS  Google Scholar 

  • Ahmad MH, Venkataraman GS (1973) Tolerance of Aulosira fertilissima to pesticides. Curr Sci 42:108

    Google Scholar 

  • Aiyer RS, Slahudeen S, Venkataraman GS (1972) Long term algalization field trail with high yielding varieties of rice (Oryza sativa L.). Indian J Agric Sci 42:380–383

    Google Scholar 

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticide use in agriculture: their benefits and hazards. Interdisciplinary Toxicol 2:1–12

    Google Scholar 

  • Alimagno BV, Yoshida T (1977) In situ acetylene-ethylene assay of biological nitrogen fixation in lowland rice soil. Plant Soil 47:239–244

    CAS  Google Scholar 

  • Alimagno BV (1974) In situ determination of biological nitrogen fixation by blue green algae in lowland rice fields. M.Sc. Thesis. University of Philippines, Los Banos, Laguna, Philippines, pp 119

  • Anees S, Suhail S, Pathak N, Zeeshan M (2014) Potential use of rice field cyanobacterium Nostoc muscorum in the evaluation of butachlor induced toxicity and their degradation. Bioinform 10:65–370

    Google Scholar 

  • Anonymous (1977) Studies on biological nitrogen fixation. Nuclear Institute of Agriculture and Biology. In: Five Years of NIAB, Lyallpur, pp. 43–45

  • Arle HF (1968) Trifluralin-systematic insecticide interactions on seedling cotton. Weed Sci 16:430–432

    CAS  Google Scholar 

  • Aslim B, Ozturk S (2009) Toxicity of herbicides to cyanobacterial isolates. J Environ Biol 30:381–384

    CAS  PubMed  Google Scholar 

  • Babu S, Prasanna R, Bidyarani N, Singh R (2014) Analysing the colonization of inoculated cyanobacteria in wheat plants using biochemical and molecular tools. J Appl Phycol 27:327–338

    Google Scholar 

  • Babu GS, Hans RK, Singh J, Viswanathan PN, Joshi PC (2001) Effect of lindane on the growth and metabolic activities of cyanobacteria. Ecotoxicol Environ Saf 48:219–221

    Google Scholar 

  • Bagal JC, Patil PL (1984) Effects of blue-green algae and nitrogenous fertilizer on yield of rice. J Maharashtra Agri Univ 9(2):173–174

    Google Scholar 

  • Bagal JC, Patil PL, Jadhav SK, Sawashe (1984) Effects of blue-green algae and nitrogenous fertilizer on yield of rice. J Maharashtra Agri Univ 9 (3): 299–300

  • Batterton JC, Bousch GM, Matsumura F (1971) Growth response of blue-green algae to aldrin, dieldrin, endrin and their metabolites. Bull Environ Contam Toxicol 6:589–594

    CAS  PubMed  Google Scholar 

  • Bidyarani N, Prasanna R, Chawla G, Babu S, Singh R (2014) Deciphering the factors associated with the colonization of rice plants by cyanobacteria. J Basic Microbiol 55:407–419

    PubMed  Google Scholar 

  • Bisoyi RN, Singh PK (1988) Effect of phosphorus fertilization on blue-green algal inoculums production and nitrogen yield under field conditions. Biol Fertl Soils 5:338–343

    CAS  Google Scholar 

  • Bueno M, Fillat MF, Strasser RJ, Maldonado-Rodriguez R, Marina N, Smienk H, Gomez-Moreno C, Barja F (2004) Effects of Lindane on the photosynthetic apparatus of the cyanobacterium Anabaena. Environ Sci Polut Res 11:98–106

    CAS  Google Scholar 

  • Chaurasia AK, Adhya TK, Apte SK (2013) Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol 149:439–445

    CAS  PubMed  Google Scholar 

  • Chen Z, Juneau P, Baosheng Q (2007) Effects of three pesticides on the growth, photosynthesis and photoinhibition of the edible cyanobacteria Ge-Xian-Mi (Nostoc). Aquat Toxicol 81:256–265

    CAS  PubMed  Google Scholar 

  • Chittapun S, Limbipichai S, Amnuaysin N, Boonkerd R, Charoensook M (2018) Effects of using cyanobacteria and fertilizer on growth and yield of rice, Pathum Thani I: a pot experiment. J Appl Phycol 30:79–85

    Google Scholar 

  • Cullimore DR, McCann AE (1977) Influence of four herbicides on the algal flora of a prairie soil. Plant Soil 46:455–510

    Google Scholar 

  • Da Silva EJ, Henricksson LE, Henricksson E (1975) Effect of pesticides on blue-green algae and nitrogen fixation. Arch Environ Contam Toxicol 3:193–204

    Google Scholar 

  • Das B, Singh PK (1978a) Mutagenicity of pesticides in blue-green algae. Microbios Lett 5:103–107

    Google Scholar 

  • Das B, Singh PK (1978b) Pesticide (hexachlorocyclohexane) inhibition of growth and nitrogen fixation I blue-green algae Anabaenopsis raciborskii and Anabaena aphanizomenoides. Z Allg Microbiol 18:161–167

    CAS  Google Scholar 

  • Das B, Singh PK (1977) Detoxication of the pesticide benzene hexachloride by blue-green algae. Microbios Lett 4:99–102

    CAS  Google Scholar 

  • Dash NP, Kaushik MS, Kumar A, Abraham G, Singh PK (2017a) Nitrogenous agrochemicals inhibiting native diazotrophic cyanobacterial contribution in wetland rice ecosystem. J Appl Phycol 29:929–939

    CAS  Google Scholar 

  • Dash NP, Kaushik MS, Kumar A, Abraham G, Singh PK (2017b) Agrochemicals influencing nitrogenase, biomass of N2 fixing cyanobacteria and yield of rice in wetland cultivation. Biocat Agri Biotechnol 9:28–34

    Google Scholar 

  • Dash NP, Kaushik MS, Kumar A, Abraham G, Singh PK (2017c) Toxicity of biocides to native cyanobacteria at different rice crop stages in wetland paddy field. J Appl Phycol 30:483–493

    Google Scholar 

  • Dash NP, Kaushik MS, Kumar A, Singh PK (2016) Cyanobacterial (unicellular and heterocystous) biofertilization to wetland rice as influenced by nitrogenous agrochemical. J Appl Phycol 28:3343–3351

    CAS  Google Scholar 

  • Dash NP, Kumar A, Singh PK (2015) Cyanobacteria, pesticides and rice interaction. Biodivers Conserv 24:995–1005

    Google Scholar 

  • De PK, Sulaiman M (1950) Fixation of nitrogen in rice soil by algae as influenced bycrop CO2 and inorganic substances. Soil Sci 70:137–151

    CAS  Google Scholar 

  • De PK (1939) The role of blue-green algae in nitrogen fixation in rice fields. Proc Roy Soc Lond 127:121–139

    CAS  Google Scholar 

  • Debnath N, Mandal NC, Ray S (2012) Effect of fungicides and insecticides on growth and enzyme activity of four cyanobacteria. Ind J Microbiol 52:275–280

    CAS  Google Scholar 

  • Donald DB, Bogard MJ, Finlay K, Leavitt PR (2011) Comparative effects of urea, ammonium, and nitrate on phytoplankton abundance, community composition, and toxicity in hypereutrophic freshwaters. Limnol Oceanogr 56:2161–2175

    CAS  Google Scholar 

  • Drewes K (1928) Uber die Assimilation des Luftstickstoffs durch Blaualgen. Zentralbl Bakteriol Parasitenkd Abt II 76:88–101

    CAS  Google Scholar 

  • El-Ayouty EYM (1966) Systematik und stickstoffbindung einiger Blau-algen in Lehmboden aus einem humiden und einem semiariden Gebiet. Ph.D. Thesis, Faculty of Justus Liebig-University of Giessen, Germany

  • El-Borollosy MN (1972) Cited in EL-Nawawy and Hamid, 1975. Elder, J.F. and Horne, A.J. (1978). Copper cycles and CuSO4 algicidal capacity in two California lakes. Environ Management 2:17–30

    Google Scholar 

  • Eley JH, Mc Connel JF, Carlett RH (1983) Inhibition of Metribuzin on growth and photosynthesis of BGA Anacystis nidulans. Environ Exp Bot 23:365–368

    CAS  Google Scholar 

  • El-Nawawy AS, Hamdi YA (1975) Research on blue-green algae in Egypt, 1958-1972. In: Stewart WDP (ed) Nitrogen fixation by free-living microorganisms. Cambridge Univ. Press, London pp 219-228

  • El-Nawawy AS, El-Fadl MA, Nada MM (1962) Economical studies on algae in Egypt. I. Effects of new isothiouronium derivatives of arylmercaptoalkane carboxylic acids on the paddy soil flora of algae in Egypt. J Soil Sci UAR 2:103–113

    Google Scholar 

  • Esteves-Ferreira AA, Cavalcanti JHF, Vaz MGMV, Alvarenga LV, Nunes-Nesi A, Araújo WL (2017) Cyanobacterial nitrogenases: phylogenetic diversity, regulation and functional predictions. Genet Mol Biol 40:261–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • FAO (2017) Rice market monitor 2: 1–23

  • Fowler D, Coyle M, Skiba U, Sutton MA, Cape JN, Reis S, Sheppard LJ, Jenkins A, Grizzetti B, Galloway JN, Vitousek P, Leach A, Bouwman AF, Butterbach-Bahl K, Dentener F, Stevensonm D, Amann M, Voss M (2013) The global nitrogen cycle in the twenty first century. Phil Trans Roy Soc B 368:20130164

    Google Scholar 

  • Gadkari D (1988) Assessment of the effects of the photosynthesis-inhibiting herbicides Diuron, DCMU, Metamitron and Metribuzin on growth and nitrogenase activity of Nostoc muscorum and a new cyanobacterial isolate strain G4. Biol Fert Soil 6:50–54

    CAS  Google Scholar 

  • Gadkari D (1987) Influence of photosynthesis-inhibiting herbicides Goltix and Sencor on growth and nitrogenase activity of Anabaena cylindrica and Nostoc muscorum. Biol Fert Soil 3:171–177

    CAS  Google Scholar 

  • Galhano V, Peixoto F, Gomes-Laranjo J, Fernández-Valiente E (2009) Differential effects of bentazon and molinate on Anabaena cylindrica, an autochthonous cyanobacterium of Portuguese rice field agro-ecosystems. Water Air Soil Pollut 197:211–222

    CAS  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. BioScience 53:341–356

    Google Scholar 

  • Gangawane LV (1979) Tolerance of thimet by nitrogen fixing blue-green algae. Pesticides 13:33–34

    CAS  Google Scholar 

  • Geiseller D, Scow KM (2014) Long term effects of mineral fertilizers on soil microorganisms-a review. Soil Biol Biochem 75:54–63

    Google Scholar 

  • Goyal SK, Venkataraman GS (1971) Response of high yielding rice varieties to algalization. Phykos 10:32–33

    Google Scholar 

  • Grzesik M, Romanowska-Duda (2015) Ability of cyanobacteria and green algae to improve metabolic activity and development of willow plants. Pol J Environ Stud 24(3):1003–1012

    Google Scholar 

  • Habte M, Alaxender M (1980) Nitrogen fixation by photosynthetic bacteria in lowland rice culture. Appl Environ Microbiol 39:342–347

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hamdi YA, EI Nawawy AS, Tewfik MS (1970) Effect of herbicides on growth and nitrogen fixation by alga Tolypothrix tenuis. Acta Microbiol Pol Ser B 2(19):53

    CAS  Google Scholar 

  • Hardarson G, Danso SKA (1993) Methods for measuring biological nitrogen fixation in grain legumes. Plant Soil 152:19–23

    Google Scholar 

  • Herrero OA, Muro-Pastor AM, Flores E (2001) Nitrogen controlling cyanobacteria. J Bacteriol 183:411–425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18

    CAS  Google Scholar 

  • Hirang T (1958) Studies on the blue-green algae. Part II Study on the formation of humus due to the growth of blue-green algae. Bull Shikoku Agric Expt Stn 63-74:4 (in Japanese , English summary)

    Google Scholar 

  • Hutbur GN, Rogers LJ, Smith AJ (1979) Influence of pesticides on growth of cyanobacteria. Z Allg Microbiol 19:397–401

    Google Scholar 

  • Ibrahim WM, Karam MA, El-Shahat RM, Adway AA (2014) Biodegradation and utilization of organophosphorus pesticide malathion by cyanobacteria. Biomed Res Internat. https://doi.org/10.1155/2014/392682

  • Ibrahim AN, Kamel M, El-Sherbeny M (1971) Effect of inoculaltion with alga Tolypothrix tenuis on the yield of rice and soil nitrogen balance. Agrokém Talajt 20(3):328–400

    Google Scholar 

  • Inger L (1970) Effect of two herbicides on nitrogen fixation by blue green algae. Svensk Bot Tidskr 64:460–461

    Google Scholar 

  • Jha KK, Ali MA, Singh R, Bhattacharya PB (1965) Increasing rice production through the inoculation of Tolypothrix tenius a nitrogen fixing blue green alga. Indian Soc Soil Sci 13:161–166

    Google Scholar 

  • Kar S, Singh PK (1979) Effect of nutrients on the toxicity of pesticides, carbofuran and hexachlorocyclohexane to blue green alga Nostoc muscorum. Z Allg Microbiol 19:467–472

    CAS  Google Scholar 

  • Kar S, Singh PK (1978a) Toxicity of carbofuran to blue-green alga Nostoc muscorum. Environ Contam Toxicol 20:707–714

    CAS  Google Scholar 

  • Kar S, Singh PK (1978b) Effect of pH, light intensity and population on the toxicity of pesticide carbofuran to blue-green algae. Microbios 21:177–184

    CAS  PubMed  Google Scholar 

  • Kashyap AK, Pandey KD (1982) Inhibitory effect of rice field herbicide machete on Anabaena doliolum Bharadwaja and protection by nitrogen sources. Z Planzen Physiol 107:339–345

    CAS  Google Scholar 

  • Kaushik BD (2014) Developments in cyanobacterial biofertilizer. Proc Indian Nat Sci Acad 80:379–388

    Google Scholar 

  • Kaushik BD (1987) Response of cyanobacterial nitrogen fixation to exogenous nitrogen. Acta Bot Indica 15:80–85

    Google Scholar 

  • Kaushik BD, Venkataraman GS (1983) Response of cyanobacterial nitrogen fixation to insecticides. Curr Sci 52:321–323

    CAS  Google Scholar 

  • Kaushik MS, Kumar A, Abraham G, Singh PK (2018) Tolerance of wetland rice field’s cyanobacteria to agrochemicals in cultural condition. Biocat Agric Biotechnol 13:236–243

    Google Scholar 

  • Kaushik MS, Srivastava M, Singh A, Mishra AK (2017) NtcA transcriptional factor: a global nitrogen regulator and connecting link between nitrogen metabolism and other crucial metabolisms. In: Singh SS (ed) Plants and microbes in ever changing environment. Nova publishing house, USA, pp 101–127

    Google Scholar 

  • Kaushik MS, Mishra AK (2015) Iron induced modifications in physiological attributed and SDS-PAGE of whole cell proteins pattern of Anabaena sp. PCC 7120 and its derivative ntcA mutant. Indian J Biotechnol 14:87–93

    CAS  Google Scholar 

  • Kaushik MS, Singh P, Tiwari B, Mishra AK (2015) Ferric uptake regulator (FUR) protein: properties and implications in cyanobacteria. Ann Microbiol 66:61–75

    Google Scholar 

  • Kulasooriya SA, Roger PA, Watanabe I (1980) Relationship between the growth of a blue-green alga and standing crop in wetland rice fields. Int Rice Res News 5:18–19

    Google Scholar 

  • Kumar N, Bora A, Kumar R, Amb MK (2012) Differential effects of agricultural pesticides endosulfan and tebuconazole on photosynthetic pigments, metabolism and assimilating enzymes of three heterotrophic, filamentous cyanobacteria. J Biol Environ Sci 6:67–75

    Google Scholar 

  • Kumar S, Habib K, Fatma T (2008) Endosulfan induced biochemical changes in nitrogen-fixing cyanobacteria. Sci Total Environ 403:130–138

    CAS  PubMed  Google Scholar 

  • Kumar S, Lal R, Bhatnagar P (1988) Uptake of dieldrin, dinethoate and permethrin by cyanobacteria Anabaena sp. and A fertilissima. Environ Pollut 54:55–61

    CAS  PubMed  Google Scholar 

  • Lebedeva GF, Chernova NI, Epishina LV (1978) The persistence of 1,3,5-triazines in a dorno-podzolic soil and their influence on microflora. Vestnik Moskovskoga Universiteta 16(2):44–46

    Google Scholar 

  • Leganes F, Fernandez-Veliente E (1992) Effcets of phenoxyacetic herbicides on growth, photosynthesis and nitrogenase activity in cyanobacteria from rice fields. Arch Environ Contam Toxicol 22:130–134

    CAS  PubMed  Google Scholar 

  • Lewis JA, Papavizas GC, Hora TS (1978) Effect of some herbicide on microbial activity in soil. Soil Biol Biochem 10:137–141

    CAS  Google Scholar 

  • Lopez-Gomollón S, Hernández JA, Pellicer S, Angarica VE, Peleato ML, Fillat MF (2007) Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in furA and ntcA regulons. J Mol Biol 374:267–281

    PubMed  Google Scholar 

  • Magnusson M, Heimann K, Quayle P, Negri AP (2010) Additive toxicity of herbicide mixture and comparative sensitivity of tropical benthic microalgae. Mar Pollut Bull 60:1978–1987

    CAS  PubMed  Google Scholar 

  • Maule A, Wright SJL (1984) Herbicide effects on the population growth of some green algae and cyanobacteria. J Appl Bacteriol 57:369–376

    CAS  Google Scholar 

  • Mayland HF, McIntosh TH (1966) Availability of biologically fixed nitrogen-15 to higher plants. Nature 209:421–422

    CAS  Google Scholar 

  • Megharaj M, Venkateswarlu K, Rao AS (1988) Tolerance of algal population in rice soil to carboufran application. Curr Sci 57:100–102

    Google Scholar 

  • Mian MH, Stewart WDP (1985) Fate of nitrogen applied as Azolla and blue-green algae (cyanobacteria) in water logger rice soil—a 15N tracer study. Plant Soil 83:363–370

    CAS  Google Scholar 

  • Mikhailov EI, Kruglov YV (1973) Effect of some herbicides soil algiflora. Pochvovedenie 8:81

    Google Scholar 

  • Mohr W, Großkopf T, Wallace DWR, LaRoche J (2010) Methodological underestimation of oceanic nitrogen fixation rates. PLoS One 5(9):e12583

    PubMed  PubMed Central  Google Scholar 

  • Mudholkar NJ, Sahay MN, Padalia CR (1968) Response to rice crop to algal inoculation and urea spray. Indian J Agron 18:282–284

    Google Scholar 

  • Muralikrishna PVG, Venkateswarlu K (1984) Effect of insecticides on soil algal population. Bull Environ Contam Toxicol 33:241–245

    CAS  PubMed  Google Scholar 

  • Nayak S, Prasanna R (2007) Soil pH and its role in cyanobacterial abundance and diversity in rice field soils. Appl Ecol Environ Res 5:103–113

    Google Scholar 

  • Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soil 40:67–72

    CAS  Google Scholar 

  • Padhy RN, Nayak N, Rath S (2014) Antagonism at combined effects of chemical fertilizers and carbamate insecticides on the rice-field N2-fixing cyanobacterium Cylindrospermum sp. in vitro. Interdiscip Toxicol 7:5–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Padhy RN, Rath S (2015) Probit analysis of carbamates-pesticide-toxicity at soil-water interface to N2-fixing cyanobacterium. Rice Sci 22:89–98

    Google Scholar 

  • Palmer CM, Maloney E (1955) Preliminary screening for potential algicides. Ohio J Sci 55:1–8

    CAS  Google Scholar 

  • Pandey AK (1985) Effects of Propanil on growth and cell constituents of Nostoc calcicola. Pest Biochem Physiol 23:157–162

    CAS  Google Scholar 

  • Pillay AR, Tchan YT (1972) Study of soil algae: VII. Adsorption of herbicides in soil and prediction of their rate of application by algal method. Plant Soil 36:571–594

    CAS  Google Scholar 

  • Prasanna R, Kumar A, Babu S, Chawla G, Chaudhary V, Singh S, Gupta V, Nain L, Saxena AK (2013) Deciphering the biochemical spectrum of novel cyanobacterium based biofilms for use as inoculants. Biol Agric Hortic 29:145–158

    Google Scholar 

  • Prasanna R, Nain L, Pandey AK, Saxena AK (2012) Microbial diversity and multidimensional interactions in the rice ecosystem. Arch Agron Soil Sci 58:723–744

    Google Scholar 

  • Prasanna R, Lata, Pandey AK, Nayak S (2010) Exploring the ecological significance of microbial diversity and networking in the rice ecosystem. In: Dion P (ed) Soil biology and agriculture in the tropics. Springer, Berlin, pp 139–161

    Google Scholar 

  • Prasanna R, Jaiswal P, Nayak S, Sood A, Kaushik BD (2009) Cyanobacterial diversity in the rhizosphere of rice and its ecological significance. Indian J Microbiol 49:89–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Jaiswal P, Kaushik BD (2008) Cyanobacteria as potential options for environmental sustainability—promises and challenges. Indian J Microbiol 48:89–94

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanna R, Nayak S (2007) Influence of diverse rice soil ecologies on cyanobacterial diversity and abundance. Wetl Ecol Manag 15:127–134

    Google Scholar 

  • Prikhod’kova LP (1968) Blue-green algae of the rice fields in the Skadovsk district Kerson region. Ukr Bot Zn 25:59–64

    Google Scholar 

  • Priya H, Prasanna R, Ramakrishnan B, Bidyarani N, Babu S, Thapa S, Renuka N (2015) Influence of cyanobacterial inoculation on the culturable microbiome and growth of rice. Microbiol Res 171:78–89

    CAS  PubMed  Google Scholar 

  • Rao Y, Li Y, Qian Q (2014) Recent progress on molecular breeding of rice in China. Plant Cell Rep 33:551–564

    CAS  PubMed  PubMed Central  Google Scholar 

  • Relwani LL, Manna GB (1964) Effect of blue green algae in combination with urea on rice yield. Curr Sci 33(22):687

    Google Scholar 

  • Renaut J, Sasson HW, Stewart WDP (1975) Nitrogen fixing algae in Morocco. In: Stewart WDP (ed) Nitrogen fixation by free-living micro-organisms. Cambridge University Press, Cambridge, pp 229–246

    Google Scholar 

  • Reynaud PA, Roger PA (1978) N2-fixing algal biomass in Senegal rice fields. Ecol Bull Stockholm 26:148–157

    Google Scholar 

  • Roger PA (1991) Reconsidering the utilization of blue-green algae in wetland rice cultivation. In: Biological N2-fixation associated with rice production, Oxford and IBH Publ. New Delhi, India, pp. 119–141

  • Roger PA, Kulasooriya SA (1980) Ecology and blue-green algae in paddy fields. In Blue-green algae and rice, The International Rice Research Institute, Manila, pp. 11–36

  • Rohwer F, Fluckiger W (1979) Effect of atrazine on growth, nitrogen fixation and photosynthetic rate of Anabaena cylindrica. Angew Botanik 53:59–64

    CAS  Google Scholar 

  • Rother JA, Whitton BA (1989) Nitrogenase activity of blue-green algae on seasonally flooded soils in Bangladesh. Plant Soil 113:47–52

    Google Scholar 

  • Rowell P, Sampaio MJAM, Ladha JK, Stewart WDP (1979) Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH4 +. Arch Microbiol 120:195–200

    CAS  Google Scholar 

  • Saha KC, Panigrahi S, Bandopadhaya SK, Mandal LN (1984) Effect of phorate on nitrogen fixation by blue-green algae. J Indian Soc Soil Sci 32:79–83

    CAS  Google Scholar 

  • Saha KC, Mandal LN (1980a) Influence of urea on the nitrogen fixation due to blue-green algae. Indian J Agri Sci 50:431–433

    Google Scholar 

  • Saha KC, Mandal LN (1980b) A greenhouse study on the effect of inoculation of N-fixing blue-green algae in an alluvial soil treated with P and Mo on yield of rice and changes on the N content of soil. Plant Soil 57:23–30

    CAS  Google Scholar 

  • Saha KC, Mandal LN (1979) Distribution of nitrogen fixing blue green algae in some rice sois of West Bengal. J Indian Soc Soil Sci 21:470–477

    Google Scholar 

  • Sahu D, Bastia AK, Rath B (2015) Toxicity of organophosphorus pesticides on rice field cyanobacteria. Int J Geol Agric Environ Sci 3:6–10

    Google Scholar 

  • Saito M, Watanabe I (1978) Organic matter production in rice field flood water. Soil Sci Plant Nut 28:427–440

    Google Scholar 

  • Sakamoto T, Delgaizo VB, Bryant DA (1998) Growth on urea can trigger death and peroxidation of the cyanobacterium Synechococcus sp. strain PCC 7002. App Environ Microbiol 64:2361–2366

    CAS  Google Scholar 

  • Sankaram A (1971) Work done on blue-green algae in relation to agriculture. Indian Council Agric Res, New Delhi

  • Sankaram S (1977) Blue green algae-role in rice culture. Farmer and Parliament 12:11–12

    Google Scholar 

  • Sankaram S (1975) Blue green algae-role in rice culture. Farmer and Parliament 10:15–16

    Google Scholar 

  • Schauberger CW, Wildman RB (1977) Accumulation of aldrin and dieldrin by blue-green algae and related effects on photosynthetic pigments. Bull Environ Contam Toxicol 17:534

    CAS  PubMed  Google Scholar 

  • Shariatmadari Z, Riahi H, Hashtroudi MS, Ghassempour AR, Aghashariatmadary Z (2013) Plant growth promoting cyanobacteria and their distribution in terrestrial habitats of Iran. Soil Sci Plant Nutr 59:535–547

    CAS  Google Scholar 

  • Singh JS, Kumar A, Rai AN, Singh DP (2016a) Cyanobacteria: a precious bio-resource in agriculture. Ecosys Environ Sustain 7:529

    Google Scholar 

  • Singh NK, Dhar DW, Tabassum R (2016b) Role of cyanobacteria in crop protection. Proc Natl Acad Sci India B 86:1–8

    CAS  Google Scholar 

  • Singh DP, Khattar JIS, Kaur G, Singh Y (2016c) Toxicological impact of herbicides on cyanobacteria. Ann Res Rev Biol 9:1–39

    Google Scholar 

  • Singh P, Kaushik MS, Srivastava M, Mishra AK (2014) Phylogenetic analysis of heterocystous cyanobacteria (subsections IV and V) using highly iterated palindromes as molecular markers. Physiol Mol Biol Plants 20:331–342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Bisoyi RN (1989) Blue-green algae in rice fields. Phykos 28:181–195

    Google Scholar 

  • Singh LJ, Tiwari DN (1988) Effects of selected rice field herbicides on photosynthesis respiration and nitrogen assimilating enzyme systems of paddy soil diazotrophic cyanobacteria. Pest Biochem Physiol 31:120–128

    CAS  Google Scholar 

  • Singh PK (1985) Nitrogen fixation by the blue-green algae in paddy fields. In: Rice research in India, ICAR, New Delhi, pp 344–362

  • Singh PK, Singh AL (1983) Comparative studies on Azolla and blue-green algae biofertilization to rice crop. In: Proc. All India Applied Phycol. Congr. Kanpur, India, pp 334–349

  • Singh PK (1981) Potentiality of blue-green algae and Azolla biofertilizer in rice cultivation in India. In: Gibson AH, Newton WH (eds) Current perspective in nitrogen fixation. Australian Academy of Science, Canberra, p 499

    Google Scholar 

  • Singh PK (1978a) Nitrogen economy of rice soils in relation to nitrogen fixation by blue-green algae and Azolla. In: National symposium on increasing rice yield in Kharif. CRRI, Cuttack, pp 221–239

  • Singh PK (1978b) Effect of ammonia on growth and nitrogen fixation by blue green algae of rice fields. In: Singh SP, Tiwari DN, Kashyap AK and Yadav PK, (eds), Advances in cyanophyta research, Banaras Hindu University, pp 29–32

  • Singh PK (1977) Growth and nitrogen fixation of unicellular blue-green algae Aphanothece castagnei. Biol Plant 19:156–157

    CAS  Google Scholar 

  • Singh PK (1976) Algal inoculation and its growth in waterlogged rice fields. Phykos 15:5–10

    Google Scholar 

  • Singh PK (1975) Fertilizer tolerance of blue-green algae and their effect on heterocyst differentiation. Phykos 14:81–88

    Google Scholar 

  • Singh PK (1974) Algacidal effect of 2,4-dichloro phenoxy acetic acid on blue-green alga Cylindrospermum sp. Arch Microbiol 97:69–72

    CAS  Google Scholar 

  • Singh PK (1973) Effects of pesticides on blue-green algae. Arch Microbiol 89:317–320

    CAS  Google Scholar 

  • Singh RN, Tiwari DN, Singh VP (1972) Genetic basis of cellular differentiation in blue-green algae. In: Desikachary TV (ed.) Taxonomy and biology of blue-green algae. University of Madras, pp 27–37

  • Singh RN (1961) Role of the blue-green algae in nitrogen economy of Indian Agriculture. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  • Singh RN (1942) The fixation of elementary nitrogen by some of the commonest blue-green algae from the paddy field soils of the United provinces and Bihar. Indian J Agric Sci 2:743–756

    Google Scholar 

  • Sood A, Singh PK, Kumar A, Singh R, Prasanna R (2011) Growth and biochemical characterization of associations between cyanobionts and wheat seedlings in co-culturing experiments. Biologia 66:104–110

    CAS  Google Scholar 

  • Srinivasan S, Ponnuswami V (1978) Influence of weedicides on blue-green algae. Aduthurai Rep 2:136

    Google Scholar 

  • Srivatava M, Kaushik MS, Mishra AK (2015) Linking the physico-chemical properties with the abundance and diversity of rhizospheric bacterial population inhabiting paddy soil based on a concerted multivariate analysis of PCR-DGGE and Ribosomal Intergenic Spacer Analysis (RISA). Geomicrobiol 33:894–905

    Google Scholar 

  • Stacey G, Bottomley PJ, Van Baalen C, Tabita FR (1979) Control of heterocyst and nitrogenase synthesis in cyanobacteria. J Bacteriol 137:321–326

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stacey G, Tabita FR, Van Baalen C (1977) Nitrogen and ammonia assimilation in the cyanobacteria: purification of glutamine synthetase from Anabaena sp. strain CA. J Bacteriol 132:596–603

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subrahmanayan R (1972) Some observations on utilization of blue-green algae mixture in rice cultivation in India. In: Desikachary TV (ed), Proc 1st International Symposium on Taxonomy and Biology of Blue-green Algae. Madras, India pp 281–293

  • Subrahmanayan R, Relwani LL, Manna GB (1964a) Observation on the role of blue green algae on rice yield compared with that of conventional fertilizers. Curr Sci 33:485–486

    Google Scholar 

  • Subrahmanayan R, Relwani LL, Manna GB (1964b) Role of blue green algae and different methods of soil sterilization on rice yield. Proc Indian Acad Sci B 60:293–297

    Google Scholar 

  • Swarnalakshmi K, Dhar DW, Singh PK (2006) Blue green algae a potential biofertilizer for sustainable rice cultivation. Proc Indian Natl Sci Acad 72:135–143

    Google Scholar 

  • Taha MS (1963) Isolation of some nitrogen fixing blue green algae from rice fields of Egypt in pure culture. Microbiologia 32:421–425

    Google Scholar 

  • Tiwari ON, Dhar DW, Prasanna R, Shukla HM, Singh PK, Tiwari GL (2000) Growth and nitrogen fixation of non-heterocystous filamentous cyanobacteria of rice fields of Uttar Pradesh, India. Phillipines J Sci 129:100–107

    Google Scholar 

  • Tiwari DN, Pandey AK, Mishra AK (1981) Action of 2,4-dichlorophenoxy acetic acid on growth and heterocyst formation in a blue green alga Nostoc linckia. J Biosci 3:33–39

    CAS  Google Scholar 

  • Torrs AMR, O’Flaherty LM (1976) Influence of pesticides on Chlorella, Chlorococcum, Stigeoclonium (Chlorophyceae), Tribonema, Vaucheria (Xanthophyceae)¸ Oscillatoria (Cyanophyceae). Phycologia 15:25–36

    Google Scholar 

  • Tözüm-Çalgan SRD, Sivaci-Güner S (1993) Effects of 2,4-D and methyl parathion on growth and nitrogen fixation in cyanobacterium Gloeocapsa. Intl J Environ Stud 43:307–311

    Google Scholar 

  • Trarore T (1985) Nitrogen fixation by cyanobacteria in paddy fields of Mali. J Appl Microbiol Biotechnol 1:213–214

    Google Scholar 

  • Trarore TM, Roger PA, Reynaud PA, Sasson A (1978) N2-fixation by blue-green algae in a paddy field in Mali. Cah ORSTOM Ser Biol 13:181–185 (in French, English summary)

    Google Scholar 

  • Tripathi A, Sundaram S, Tripathy BC, Tiwari BS, Rahman A (2011) Activity and stability of herbicide treated cyanobacteria as potential biomaterials for biosensors. Res J Environ Sci 5:479–485

    CAS  Google Scholar 

  • Vaishampayan A (1984) Studies on diuron uptake in a blue-green alga Nostoc muscorum. J Exp Bot 35:897–904

    CAS  Google Scholar 

  • Vaishampayan A, Singh HR, Singh HN (1978) Biological effects of rice field herbicides stam f-34 on various strains of the nitrogen fixing blue green algae Nostoc muscorum. Biochem Physiol Pflanzen 173:410–419

    CAS  Google Scholar 

  • Venkataraman GS (1981) Blue-green algae for rice production—a manual for its promotion. FAO Soils Bull No 46:102

    Google Scholar 

  • Venkataraman GS (1975) The role of blue-green algae in tropical rice cultivation. In: Stewart WDP (ed) Nitrogen fixation by free-living microorganisms. Cambridge University Press, Cambridge, pp 207–218

  • Venkataraman GS (1979) Algal inoculation of rice fields. In: Nitrogen and rice. Int. Rice Res. Inst. Los Banos, Laguna, Philippines, pp 311–321

  • Venkataraman GS, Rajyalakshmi B (1971) Tolerance of blue-green algae to pesticides. Curr Sci 40:143–144

    CAS  Google Scholar 

  • Venkataraman GS, Rajyalakshmi B (1972) Relative tolerance of nitrogen-fixing blue-green algae to pesticides. Indian J Agric Sci 42:119–121

    CAS  Google Scholar 

  • Watanabe A (1973) On the inoculation of paddy fields in the Pacific area with nitrogen-fixing blue-green algae. Soil Biol Biochem 5:161–162

    Google Scholar 

  • Watanabe A, Yamamoto Y (1971) Algal nitrogen fixation in the tropics. Plant Soil 35:403–413

    Google Scholar 

  • Watanabe A, Lee KK (1975) Non symbiotic nitrogen fixation in rice paddies. In: Ayanaba A, Dart P (eds) Biological nitrogen fixation in farming systems of the tropics. John Wiley and Sons, New York, pp 289–305

    Google Scholar 

  • Watanabe A, Lee KK, Alimagno BV, Saito M, Del Rosario DC, De Guman MR (1977) Biological nitrogen fixation in paddy fields studied by in situ acetylene reduction assay. IRRI Res Pap Ser 3:1–16

    CAS  Google Scholar 

  • Watanabe A, Lee KK, Alimagno BV (1978) Seasonal change of N2-fixation rate in rice field assayed by in situ acetylene reduction technique. I. Experiments in long term fertility plots. Soil Sci Plant Nutr 24:1–13

    CAS  Google Scholar 

  • Wilson ST, Böttjer D, Church MJ, Karl DM (2012) Comparative assessment of nitrogen fixation methodologies, conducted in the oligotrophic North Pacific Ocean. Appl Environ Microbiol 78:6516–6523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida T, Roncal RA, Bautista EM (1973) Atmospheric nitrogen-fixation by photosynthetic microorganisms in a submerged Philippine soil. Soil Sci Plant Nutr 19:117–123

    CAS  Google Scholar 

  • Zaitseva II (1979) The influence of soil herbicides on the nitrogen fixing activity of blue-green algae. Byull vesesoyuznogo, Nauchno-Isstedovatel Skogo, Inst Selskokholzyaistvennoi Mikrobiol 32:60–62 (in Russian)

    Google Scholar 

  • Zeigler RS, Barclay A (2008) The relevance of rice. Rice 1:3–10

    Google Scholar 

  • Zurek L (1981) The influence of the herbicide Lenacil and Pyrazon on the soil algae. Ekologia Polska 29(3):327–342

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank Head, Department of Botany, B.H.U., Varanasi and Indian National Science Academy, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaushik, M.S., Kumar, A., Abraham, G. et al. Field evaluations of agrochemical toxicity to cyanobacteria in rice field ecosystem: a review. J Appl Phycol 31, 471–489 (2019). https://doi.org/10.1007/s10811-018-1559-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1559-2

Keywords

Navigation