Skip to main content

Advertisement

Log in

Fucosterol inhibits the cholinesterase activities and reduces the release of pro-inflammatory mediators in lipopolysaccharide and amyloid-induced microglial cells

  • 8th Asian Pacific Phycological Forum
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

According to the cholinergic hypothesis, memory impairment in patients with Alzheimer’s disease (AD) is associated with the deficit of cholinergic function in the brain. In addition, microglial activation plays an important role in AD by producing pro-inflammatory cytokines, nitric oxide (NO), and prostaglandin E2 (PGE2). It was noted that lipopolysaccharide (LPS) and β-amyloid (Aβ) induced microglial activation leading to neuroinflammation and ultimately neuronal cell death. Fucosterol, a plant sterol found in brown algae, has been reported to exhibit several bioactivities. This study aimed to investigate the anti-cholinesterase activities of fucosterol and its effects on the release of pro-inflammatory mediators by LPS- and Aβ-induced microglial cells. Cholinesterase inhibition was determined using the modified Ellman colorimetric method. Expression of pro-inflammatory mediators was determined using RT-PCR and ELISA. The NO content was determined using the Griess test. Fucosterol exhibited dose-dependent inhibitory activities against both acetylcholinesterase and butyrylcholinesterase. It significantly inhibited the production of cytokines, namely interleukins (IL-6, IL-1β), tumor necrosis factor-α (TNF-α), NO, and PGE2 in LPS- or Aβ-induced microglial cells. Fucosterol provided protective effects against Aβ-mediated neuroinflammation by inhibiting the production of pro-inflammatory mediators. These findings provided insights into the development of fucosterol as a potential drug candidate for AD, a multifactorial neurodegenerative disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aisen PS (2002) The potential of anti-inflammatory drugs for the treatment of Alzheimer’s disease. Lancet Neurol 1:279–284

    Article  CAS  PubMed  Google Scholar 

  • Alghazwi M, Kan YQ, Zhang W, Gai WP, Garson MJ, Smid S (2016) Neuroprotective activities of natural products from marine macroalgae during 1999–2015. J Appl Phycol 28:3599–3616

    Article  CAS  Google Scholar 

  • Ali TB, Schleret TR, Reilly BM, Chen WY, Abagyan R (2015) Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLoS One 10:e0144337

    Article  PubMed  PubMed Central  Google Scholar 

  • Alloul K, Sauriol L, Kennedy W, Laurier C, Tessier G, Novosel S, Contandriopoulos A (1998) Alzheimer’s disease: a review of the disease, its epidemiology and economic impact. Arch Gerontol Geriatr 27:189–221

    Article  CAS  PubMed  Google Scholar 

  • Amenta F, Parnetti L, Gallai V, Wallin A (2001) Treatment of cognitive dysfunction associated with Alzheimer’s disease with cholinergic precursors. Ineffective treatments or inappropriate approaches? Mech Ageing Dev 122:2025–2040

    Article  CAS  PubMed  Google Scholar 

  • Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van Eldik LJ (2011) Microglial p38α MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation 8:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballard CG (2002) Advances in the treatment of Alzheimer's disease: benefits of dual cholinesterase inhibition. Eur Neurol 47:64–70

    Article  CAS  PubMed  Google Scholar 

  • Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M, Touil-Boukoffa C (2014) IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interf Cytokine Res 34:839–847

    Article  CAS  Google Scholar 

  • Bhat NR, Feinstein DL, Shen Q, Bhat AN (2002) p38 MAPK-mediated transcriptional activation of inducible nitric-oxide synthase in glial cells: roles of nuclear factors, nuclear factor κB, cAMP response element-binding protein, CCAAT/enhancer-binding protein-β, and activating transcription factor-2. J Biol Chem 277:29584–29592

    Article  CAS  PubMed  Google Scholar 

  • Bronzuoli MR, Iacomino A, Steardo L, Scuderi C (2016) Targeting neuroinflammation in Alzheimer’s disease. J Inflamm Res 9:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butterfield DA, Swomley AM, Sultana R (2013) Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antioxid Redox Signal 19:823–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Hussain MD, Yan LJ (2014) Microglia, neuroinflammation, and beta-amyloid protein in Alzheimer's disease. Int J Neurosci 124:307–321

    Article  CAS  PubMed  Google Scholar 

  • Chao WW, Kuo YH, Lin BF (2010) Anti-inflammatory activity of new compounds from Andrographis paniculata by NF-κB transactivation inhibition. J Agric Food Chem 58:2505–2512

    Article  CAS  PubMed  Google Scholar 

  • Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C, Collin F (2018) Oxidative stress and the amyloid beta peptide in Alzheimer’s disease. Redox Biol 14:450–464

    Article  CAS  PubMed  Google Scholar 

  • Corrêa SAL, Eales KL The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012, 1D:649079

  • Craig LA, Hong NS, McDonald RJ (2011) Revisiting the cholinergic hypothesis in the development of Alzheimer's disease. Neurosci Biobehavioral Rev 35:1397–1409

    Article  CAS  Google Scholar 

  • Darvesh S (2016) Butyrylcholinesterase as a diagnostic and therapeutic target for Alzheimer's disease. Curr Alzheimer Res 13:1173–1177

    Article  CAS  PubMed  Google Scholar 

  • de Souza ÉT, de Lira DP, de Queiroz AC, da Silva DJ, de Aquino AB, Mella EA, Lorenzo VP, de Miranda GE, de Araújo-Júnior JX, Chaves MC, Barbosa-Filho JM, de Athayde-Filho PF, Santos BV, Alexandre-Moreira MS (2009) The antinociceptive and anti-inflammatory activities of caulerpin, a bisindole alkaloid isolated from seaweeds of the genus Caulerpa. Mar Drugs 7:689–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Dumery L, Bourdel F, Soussan Y, Fialkowsky A, Viale S, Nicolas P, Reboud-Ravaux M (2001) β-amyloid protein aggregation: its implication in the physiopathology of Alzheimer’s disease. Pathol Biol 49:72–85

    Article  CAS  PubMed  Google Scholar 

  • Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  PubMed  Google Scholar 

  • Fan B, Dun SH, Gu JQ, Guo Y, Ikuyama S (2015) Pycnogenol attenuates the release of proinflammatory cytokines and expression of perilipin 2 in lipopolysaccharide-stimulated microglia in part via inhibition of NF-κB and AP-1 activation. PLoS One 10:e0137837

    Article  PubMed  PubMed Central  Google Scholar 

  • Farasat M, Khavari-Nejad RA, Nabavi SMB, Namjooyan F (2014) Antioxidant activity, total phenolics and flavonoid contents of some edible green seaweeds from northern coasts of the Persian Gulf. Iran J Pharm Res 13:163–170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira ST, Lourenco MV, Oliveira MM, De Felice FG (2015) Soluble amyloid-β oligomers as synaptotoxins leading to cognitive impairment in Alzheimer’s disease. Front Cell Neurosci 9:191

    PubMed  PubMed Central  Google Scholar 

  • Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66:137–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gany SA, Tan SC, Gan SY (2014) Antioxidative, anticholinesterase and anti-neuroinflammatory properties of Malaysian brown and green seaweeds. Int J Biol Food Vet Ag Eng 8:11

    Google Scholar 

  • Gauthier S (2002) Advances in the pharmacotherapy of Alzheimer’s disease. Can Med Assoc J 166:616–623

    Google Scholar 

  • Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) Beta-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11:257–274

    Article  CAS  PubMed  Google Scholar 

  • Greig NH, Utsuki T, Ingram DK, Wang Y, Pepeu G, Scali C, Yu QS, Mamczarz J, Holloway HW, Giordano T, Chen D, Furukawa K, Sambamurti K, Brossi A, Lahiri DK (2005) Selective butyrylcholinesterase inhibition elevates brain acetylcholine, augments learning and lowers Alzheimer β-amyloid peptide in rodent. Proc Natl Acad Sci U S A 102:17213–17218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampel H, Mesulam MM, Cuello AC, Khachaturian AS, Farlow MR, Snyder PJ, Giacobini E, Khachaturian ZS (2017) Revisiting the cholinergic hypothesis in Alzheimer’s disease: emerging evidence from translational and clinical research. Alzheimer’s Dementia

  • Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer's disease: a systematic review and meta-analysis. Clin Interv Aging 3:211–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang SH, Jang JM, Lim SS (2012) Isolation of fucosterol from Pelvetia siliquosa by high-speed countercurrent chromatography. Fish Aquat Sci 15:191–195

    CAS  Google Scholar 

  • Jung HA, Jin SE, Ahn BR, Lee CM, Choi JS (2013) Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol 59:199–206

    Article  CAS  PubMed  Google Scholar 

  • Kim M, Li YX, Dewapriya P, Ryu B, Kim SK (2013) Floridoside suppresses pro-inflammatory responses by blocking MAPK signaling in activated microglia. BMB Rep 46:398–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Lee MS, Lee B, Gwon WG, Joung EJ, Yoon NY, Kim HR (2014) Anti-inflammatory effects of sargachromenol-rich ethanolic extract of Myagropsis myagroides on lipopolysaccharide-stimulated BV-2 cells. BMC Complement Altern Med 14:231

    Article  PubMed  PubMed Central  Google Scholar 

  • Krabbe G, Halle A, Matyash V, Rinnenthal JL, Eom GD, Bernhardt U, Miller KR, Prokop S, Kettenmann H, Heppner FL (2013) Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 8:e60921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A 95:6448–6453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Lee YS, Jung SH, Kang SS, Shin KH (2003) Anti-oxidant activities of fucosterol from the marine algae Pelvetia siliquosa. Arch Pharm Res 26:719–722

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Shin KH, Kim BK, Lee S (2004) Anti-diabetic activities of fucosterol from Pelvetia siliquosa. Arch Pharm Res 27:1120–1122

    Article  CAS  PubMed  Google Scholar 

  • Lee JW, Lee YK, Yuk DY, Choi DY, Ban SB, Oh KW, Hong JY (2008) Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation 5:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357

    Article  PubMed  Google Scholar 

  • Liang X, Wang Q, Hand T, Wu L, Breyer RM, Montine TJ, Andreasson K (2005) Deletion of the prostaglandin E2 EP2 receptor reduces oxidative damage and amyloid burden in a model of Alzheimer’s disease. J Neurosci 25:10180–10187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukiw WJ (2016) Bacteroides fragilis lipopolysaccharide and inflammatory signaling in Alzheimer’s disease. Front Microbiol 7:1544

    Article  PubMed  PubMed Central  Google Scholar 

  • Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21:6461–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandrekar S, Landreth GE (2010) Microglia and inflammation in Alzheimer’s disease. CNS Neurol Disord Drug Targets 9:156–167

    Article  PubMed Central  Google Scholar 

  • Mesulam M, Guillozet A, Shaw P, Quinn B (2002) Widely spread butyrylcholinesterase can hydrolyze acetylcholine in the normal and Alzheimer brain. Neurobiol Dis 9:88–93

    Article  CAS  PubMed  Google Scholar 

  • Mohibbullah M, Haque MN, Khan MNA, Park I-S, Moon IS, Hong Y-K (2018) Neuroprotective effects of fucoxanthin and its derivative fucoxanthinol from the phaeophyte Undaria pinnatifida attenuate oxidative stress in hippocampal neurons. J Appl Phycol

  • Murugan AC, Vallal D, Karim R, Govindan N, Yusoff M, Rahman M (2015) In vitro antiradical and neuroprotective activity of polyphenolic extract from marine algae Padina australis H. J Chem Pharm Res 7:355–362

    CAS  Google Scholar 

  • Nordberg A, Ballard C, Bullock R, Darreh-Shori T, Somogyi M (2013) A review of butyrylcholinesterase as a therapeutic target in the treatment of Alzheimer's disease. Prim Care Companion CNS Disord 15:PCC.12r01412

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Perry EK, Perry RH, Blessed G, Tomlinson BE (1978) Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 4:273–277

    Article  CAS  PubMed  Google Scholar 

  • Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, Khapp DJ, Crews FT (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55:453–462

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos EM, Lin MT, Larson EB, Maezawa I, Tseng LH, Edwards KL, Schellenberg GD, Hansen JA, Kukull WA, Jin LW (2006) Tumor necrosis factor alpha and interleukin 10 promoter region polymorphisms and risk of late-onset Alzheimer disease. Arch Neurol 63:1165–1169

    Article  PubMed  Google Scholar 

  • Rodríguez JJ, Witton J, Olabarria M, Noristani HN, Verkhratsky A (2010) Increase in the density of resting microglia precedes neuritic plaque formation and microglial activation in a transgenic model of Alzheimer’s disease. Cell Death Dis 1:e1

    Article  PubMed  PubMed Central  Google Scholar 

  • Rossi S, Motta C, Studer V, Macchiarulo G, Volpe E, Barbieri F, Ruocco G, Buttari F, Finardi A, Mancino R, Weiss S, Battistini L, Martino G, Furlan R, Drulovic J, Centonze D (2014) Interleukin-1β causes excitotoxic neurodegeneration and multiple sclerosis disease progression by activating the apoptotic protein p53. Mol Neurodegener 9:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sevevirathne M, Lee KH, Ahn CB, Park PJ, Je JY (2012) Evaluation of antioxidant, anti-Alzheimer’s and anti-inflammatory activities of enzymatic hydrolysates from edible brown seaweed (Laminaria japonica). J Food Biochem 36:207–216

    Article  CAS  Google Scholar 

  • Shih RH, Wang CY, Yang CM (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimizu H, Koyama T, Yamada S, Lipton SA, Satoh T (2015) Zonarol, a sesquiterpene from the brown algae Dictyopteris undulata, provides neuroprotection by activating the Nrf2/ARE pathway. Biochem Biophys Res Commun 457:718–722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82:756–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stirk WA, Reinecke DL, van SJ (2007) Seasonal variation in antifungal, antibacterial and acetylcholinesterase activity in seven South African seaweeds. J Appl Phycol 19:271–276

    Article  CAS  Google Scholar 

  • Tan CC, Yu JT, Wang HF, Tan MS, Meng XF, Wang C, Jiang T, Zhu XC, Tan L (2014) Efficacy and safety of donepezil, galantamine, rivastigmine, and memantine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 41:615–631

    Article  CAS  PubMed  Google Scholar 

  • Terry AV, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer's disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306:821–827

    Article  CAS  PubMed  Google Scholar 

  • Tirtawijaya G, Mohibbullah M, Meinita MDN, Moon IS, Hong Y-K (2016) The ethanol extract of the rhodophyte Kappaphycus alvarezii promotes neurite outgrowth in hippocampal neurons. J Appl Phycol 28:2515–2522

    Article  CAS  Google Scholar 

  • Townsend KP, Praticò D (2005) Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J 19:1592–1601

    Article  CAS  PubMed  Google Scholar 

  • Williams BR, Nazarians A, Gill MA (2003) A review of rivastigmine: a reversible cholinesterase inhibitor. Clin Ther 25:1634–1653

    Article  CAS  PubMed  Google Scholar 

  • Yan Q, Zhang J, Liu H, Babu-Khan S, Vassar R, Biere AL, Citron M, Landreth G (2003) Anti-inflammatory drug therapy alters β-amyloid processing and deposition in an animal model of Alzheimer's disease. J Neurosci 23:7504–7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Kim SC, Yu T, Yi Y-S, Rhee MH, Sung G-H, Yoo BC, Cho JY (2014, 2014) Functional roles of p38 mitogen-activated protein kinase in macrophage-mediated inflammatory responses. Mediat Inflamm:ID352371

  • Yang T, Li S, Xu H, Walsh DM, Selkoe DJ (2017) Large soluble oligomers of amyloid β-protein from Alzheimer brain are far less neuroactive than the smaller oligomers to which they dissociate. J Neurosci 37:152–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates SL, Burgess LH, Kocsis-Angle J, Antal JM, Dority MD, Embury PB, Piotrkowski AM, Brunden KR (2000) Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 74:1017–1025

    Article  CAS  PubMed  Google Scholar 

  • Ye H, Zhou C, Sun Y, Zhang X, Liu J, Hu Q, Zeng X (2009) Antioxidant activities in vitro of ethanol extract from brown seaweed Sargassum pallidum. Eur Food Res Technol 230:101–109

    Article  CAS  Google Scholar 

  • Yoo MS, Shin JS, Choi HE, Cho YW, Bang MH, Baek NI, Lee KT (2012) Fucosterol isolated from Undaria pinnatifida inhibits lipopolysaccharide-induced production of nitric oxide and pro-inflammatory cytokines via the inactivation of nuclear factor-κB and p38 mitogen-activated protein kinase in RAW264.7 macrophages. Food Chem 135:967–975

    Article  CAS  PubMed  Google Scholar 

  • Yoon NY, Chung HY, Kim HR, Choi JS (2008) Acetyl- and butyrylcholinesterase inhibitory activities of sterols and phlorotannins from Ecklonia stolonifera. Fish Sci 74:200–207

    Article  CAS  Google Scholar 

  • Zailanie K (2016) Study of Padina australis using UV-VIS, HPLC and antibacterial. J Life Sci Biomed 6:01–05

    Google Scholar 

  • Zhou F, Xu Y, Hou XY (2014) MLK3-MKK3/6-P38MAPK cascades following N-methyl-D-aspartate receptor activation contributes to amyloid-β peptide-induced apoptosis in SH-SY5Y cells. J Neurosci Res 92:808–817

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Rottkamp CA, Hartzler A et al (2001) Activation of MKK6, an upstream activator of p38, in Alzheimer’s disease. In: J Neurochem, vol 79, pp 311–318

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Ministry of Science, Technology and Innovation, Malaysia (E-Science Project no. 02-02-09-SF0017), the Ministry of Higher Education (FRGS/1/2013/ST03/IMU/02/1), and IMU Pharmacy Research Project (BP I-01/13(04)2016) for funding the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sook Yee Gan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, C.H., Gan, S.Y., Tan, S.C. et al. Fucosterol inhibits the cholinesterase activities and reduces the release of pro-inflammatory mediators in lipopolysaccharide and amyloid-induced microglial cells. J Appl Phycol 30, 3261–3270 (2018). https://doi.org/10.1007/s10811-018-1495-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1495-1

Keywords

Navigation