Skip to main content
Log in

Alleviation of NaCl toxicity in the cyanobacterium Synechococcus sp. PCC 7942 by exogenous calcium supplementation

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Salinity (NaCl) is one of the major problems associated with irrigated agricultural lands, especially rice fields. Being the common inhabitants of rice fields, cyanobacteria frequently experience high concentration of NaCl which in turn causes cellular damage. Therefore, mitigation of NaCl stress in cyanobacteria, plant growth-promoting microorganisms, is of utmost importance. The present study was designed to investigate the role of calcium in the alleviation of NaCl stress-induced cellular in Synechococcus sp. PCC 7942. The cyanobacterium was subjected to sub-lethal concentration of NaCl (800 mM) with and without the supplementation of calcium (1 mM CaCl2) for 8 days. The results showed a drastic reduction in growth due to excess NaCl, but supplementation of CaCl2 reduced the salt stress damage and partially restored growth. Application of calcium increased pigment contents, photosynthetic efficiency, antioxidative enzyme activity, osmolyte contents and reduced the intracellular sodium ion concentration, MDA content, electrolyte leakage and free oxygen radical generation. Furthermore, proteins involved in photosynthesis, respiration, ATP synthesis and protein synthesis along with two hypothetical proteins were also observed to be upregulated in the cyanobacterium in presence of calcium. Furthermore, proteins related to oxidative stress defence, nitrogen metabolism, carbohydrate metabolism, fatty acid metabolism and secondary metabolism were found to be upregulated by several fold. Therefore, our study suggests that calcium suppresses salt toxicity in Synechococcus sp. PCC 7942 by restricting the entry of Na+ into the cell, increasing osmolyte production and upregulating defence-related proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel-Basset R (1993) Role calcium and calmodulin antagonist in photosynthesis and salinity tolerance in Chlorella vulgaris. Biol Plantarum 35:237–244

    Article  CAS  Google Scholar 

  • Agostinho GR, Ute CV (2012) The role of calcium in chloroplasts—an intriguing and unresolved puzzle. Protoplasma 249:957–966

    Article  CAS  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, L-SP T (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Alexova R, Paul AH, Ferrari BC, Neilan BA (2011) Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteomics 10:1–16

    Article  CAS  Google Scholar 

  • Allakhverdiev SI, Sakamoto A, Nishiyama Y, Inaba M, Murata N (2000) Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol 123:1047–1056

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allakhverdiev SI, Nishiyama Y, Miyairi S, Yamamoto H, Inagaki N, Kanesaki Y, Murata N (2002) Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA genes in Synechocystis. Plant Physiol 130:1443–1453

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  PubMed  CAS  Google Scholar 

  • Arora S (2017) Diagnostic properties and constraints of salt-affected soils. In: Arora S et al (eds) Bioremediation of salt affected soils: an Indian perspective. Springer, Cham, pp 41–52.

    Chapter  Google Scholar 

  • Bates LS, Waldren RP, Tear ID (1975) Rapid determination of free proline for water stress studies. Plant Soil 39:205–207

    Article  Google Scholar 

  • Becker DW, Brand JJ (1985) Anacystis nidulans demonstrates a photosystem II cation requirement satisfied only by Ca or Na. Plant Physiol 19:552–555

    Article  Google Scholar 

  • Brody SS, Brody M (1961) A quantitative assay for the number of chromatophores on a chromoprotein: its application to phycoerythrin and phycocyanin. Biochim Biophys Acta 50:348–352

    Article  CAS  Google Scholar 

  • Buchanan BB, Luan S (2005) Redox regulation in the chloroplast thylakoid lumen: a new frontier in photosynthesis research. J Exp Bot 56:1439–1447

    Article  PubMed  CAS  Google Scholar 

  • Buikema WJ, Haselkorn R (1991) Isolation and complementation of nitrogen fixation mutants of the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 173:1879–1885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burstrom HG (1968) Calcium and plant growth. Biol Rev 43:287–316

    Article  CAS  Google Scholar 

  • Chance B, Maehly AC (1955) Assay of catalase and peroxidases. Meth Enzymol 2:764–775

    Article  Google Scholar 

  • Chen CG, Kazimir J, Cheniae GM (1995) Calcium modulates the photoassembly of photosystem II (Mn)4 clusters by preventing ligation of non functional high valency states of manganese. Biochemistry 41:13511–13526

    Article  Google Scholar 

  • Couée I, Sulmon C, Gouesbet G, El Amrani A (2006) Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants. J Exp Bot 57:449–459

    Article  PubMed  CAS  Google Scholar 

  • Davenport RJ, Reid RJ, Smith FA (1997) Sodium-calcium interactions in two wheat species differing in salinity tolerance. Physiol Plant 99:323–327

    Article  CAS  Google Scholar 

  • de Abreu CEB, Araújo G, Monteiro-Moreira AC, Costa JH, Leite Hde B, Moreno FB, Prisco JT, Gomes-Filho E (2014) Proteomic analysis of salt stress and recovery in leaves of Vigna unguiculata cultivars differing in salt tolerance. Plant Cell Rep 33:1289–1306

    Article  PubMed  CAS  Google Scholar 

  • Depraetere O, Deschoenmaeker F, Badri H, Monsieurs P, Foubert I, Leys N, Wattiez R, Muylaert K (2015) Trade-off between growth and carbohydrate accumulation in nutrient-limited Arthrospira sp. PCC 8005 studied by integrating transcriptomic and proteomic approaches. PLoS One 10:e0132461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deuerling E, Schulze-Specking A, Tomoyasu T, Mogk A, Bukau B (1999) Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400:693–696

    Article  PubMed  CAS  Google Scholar 

  • Dionisio Sese MI, Tobita S (1998) Antioxidant response of rice seedlings to salinity stress. Plant Sci 135:1–9

    Article  CAS  Google Scholar 

  • DuBois M, Gilles K, Hamilton J, Rebers P, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Ferjani A, Mustardy L, Sulpice R, Marin K, Suzuki I, Hagemann M, Murata N (2003) Glucosylglycerol, a compatible solute, sustains cell division under salt stress. Plant Physiol 131:1628–1637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fernandes TA, Iyer V, Apte SK (1993) Differential responses of nitrogen fixing cyanobacteria to salinity and osmotic stresses. Appl Environ Microbiol 59:899–904

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745

    Article  PubMed  CAS  Google Scholar 

  • Giannopolitis CN, Ries SK (1977) Superoxide dismutase I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golubic S (1980) Halophily and halotolerance in cyanophytes. Origin Life 10:169–183

    Article  CAS  Google Scholar 

  • He YY, Häder DP (2002) UV-B-induced formation of reactive oxygen species and oxidative damage of the cyanobacterium Anabaena sp.: protective effects of ascorbic acid and N acetyl cysteine. J Photochem Photobiol 66:115–124

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  PubMed  CAS  Google Scholar 

  • Herbaud ML, Guiseppi A, Denizot F, Haiech J, Kilhoffer MC (1998) Calcium signalling in Bacillus subtilis. Biochim Biophys Acta 1448:212–226

    Article  PubMed  CAS  Google Scholar 

  • Hifney AF (2013) Improvement of growth and some metabolites of the salt affected Anabaena circinalis by calcium. J Biol Earth Sci 3:120–128

    Google Scholar 

  • Hu J, Jin L, Wang X, Cai W, Liu Y, Wang G (2014) Response of photosynthetic systems to salinity stress in the desert cyanobacterium Scytonema javanicum. Adv Space Res 53:30–36

    Article  CAS  Google Scholar 

  • Huang F, Fulda S, Hagemann M, Norling B (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920

    Article  PubMed  CAS  Google Scholar 

  • Ismaiel MMS, El-Ayouty YM, Loewen PC, Piercey-Normore MD (2014) Characterization of the iron-containing superoxide dismutase and its response to stress in cyanobacterium Spirulina (Arthrospira) platensis. J Appl Phycol 26:1649–1658

    Article  CAS  Google Scholar 

  • Jain M, Mathur G, Koul S, Sarin NB (2001) Ameliorative effects of proline on salt stress-induced lipid peroxidation in cell lines of groundnut (Arachis hypogaea L). Plant Cell Rep 20:463–468

    Article  CAS  Google Scholar 

  • Jamil A, Riaz S, Ashraf M, Foolad MR (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30:435–458

    Article  Google Scholar 

  • Kirroliaa A, Bishnoia NR, Singh N (2011) Salinity as a factor affecting the physiological and biochemical traits of Scenedesmus quadricauda. J Algal Biomass Utln 2:28–34

    Google Scholar 

  • Kshatriya K, Singh JS, Singh DP (2009) Salt tolerant mutant of Anabaena doliolum exhibiting efficient ammonium uptake and assimilation. Physiol Mol Biol Plants 15:377–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leganés F, Forchhammer K, Fernández-Piñas F (2009) Role of calcium in acclimation of the cyanobacterium Synechococcus elongatus PCC 7942 to nitrogen starvation. Microbiology 155:25–34

    Article  PubMed  CAS  Google Scholar 

  • Liska AJ, Shevchenko A, Pick U, Katz A (2004) Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiol 136:2806–2817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lv J, Li N, Niu DK (2008) Association between the availability of environmental resources and the atomic composition of organismal proteomes: evidence from Prochlorococcus strains living at different depths. Biochem Biophys Res Commun 375:241–246

    Article  PubMed  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Manikar N, Kumar S, Habib K, Fatma T (2013) Biochemical analysis of Anabaena variabilis exposed to malathion pesticide with special reference to oxidative stress and osmolytes. Int J Innov Res Sci Eng Technol 2:5403–5420

    Google Scholar 

  • Manivannan P, Jaleel CA, Sankar B, Somasundaram R, Murali PV, Sridharan R, Panneerselvam R (2007) Salt stress mitigation by calcium chloride in Vigna radiata (L.) Wilczek. Acta Biol Cracov Ser Bot 49:105–109

    Google Scholar 

  • Mishra P, Mishra V, Takabe T, Rai V, Singh NK (2016) Elucidation of salt-tolerance metabolic pathways in contrasting rice genotypes and their segregating progenies. Plant Cell Rep 35:1273–1286

    Article  PubMed  CAS  Google Scholar 

  • Mokhaled MF, Osman MH, El-Sheekh MM, El-Naggar AH (2003) Influence of salinity stress on growth and some metabolic activities of Anabaena subcylindrica and Nostoc linckia. Thesis, Menoufia University, Egypt, Ph. D

    Google Scholar 

  • Montesano F, Van Iersel MW (2007) Calcium can prevent toxic effects of Na+ on tomato leaf photosynthesis but does not restore growth. J Am Soc Hortic Sci 132:310–318

    CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nguyên-nhu NT, Knoops B (2002) Alkyl hydroperoxide reductase1 protects Saccharomyces cerevisiae against metal ion toxicity and glutathione depletion. Toxicol Lett 135:219–228

    Article  PubMed  Google Scholar 

  • Omidbakhshfard MA, Omranian N, Shahriari Ahmadi F, Nikoloski J, Mueller-Roeber B (2012) Effect of salt stress on genes encoding translation-associated proteins in Arabidopsis thaliana. Plant Signal Behav 7:1095–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ornami EN, Hammes PS (2006) Ameliorative effects of calcium on growth and mineral uptake of salt-stressed amaranth. S Afr J Plant Soil 23:197–202

    Article  Google Scholar 

  • Pade N, Hagemann M (2015) Salt acclimation of cyanobacteria and their application in biotechnology. Life 5:25–49

    Article  CAS  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effect on plants: a review. Ecotoxicol Environ Saf 60:324–349

    Article  PubMed  CAS  Google Scholar 

  • Parre E, Ghars MA, Leprince AS, Thiery L, Lefebvre D, Bordenave M, Richard L, Mazars C, Abdelly C, Savoure A (2007) Calcium signaling via phospholipase C is essential for proline accumulation upon ionic but not nonionic hyperosmotic stresses in Arabidopsis. Plant Physiol 144:503–512

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prajapati K, Modi HA (2012) The importance of potassium in plant growth—a review. Ind J Plant Sci 1:177–186

    Google Scholar 

  • Qiu X, Wang H, Liu D, Gong L, Wu X, Xiang X (2012) The physiological response of Synechococcus elongates to salinity: a potential biomarker for ancient salinity in evaporative environments. Geomicrobiol J 29:477–483

    Article  CAS  Google Scholar 

  • Rai S, Agrawal C, Shrivastava AK, Singh PK, Rai LC (2014) Comparative proteomics unveils cross species variations in Anabaena under salt stress. J Proteome 98:254–270

    Article  CAS  Google Scholar 

  • Reddy PS, Jogeswar G, Rasineni GK, Maheswari M, Eddy AR, Varshney RK et al (2015) Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum (Sorghum bicolor (L.) Moench). Plant Physiol Biochem 94:104–113

    Article  PubMed  CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56

    Article  CAS  Google Scholar 

  • Rippka R, Deruelles J, Waterbury JB, Herdman MR, Stanier RY (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61

    Google Scholar 

  • Rocha ER, Smith CJ (1999) Role of the alkyl hydroperoxide reductase (ahpCF) gene in oxidative stress defense of the obligate anaerobe Bacteroides fragilis. J Bact 181:5701–5710

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communication with calcium. Plant Cell 11:691–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sang T, Shan X, Li B, Shu S, Sun J, Guo S (2016) Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. Plant Cell Rep 35:1769–1782

    Article  PubMed  CAS  Google Scholar 

  • Schubert H, Hagemann M (1990) Salt effects on 77 K fluorescence and photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. FEMS Microbiol Lett 71:169–172

    Article  CAS  Google Scholar 

  • Schubert H, Fulda S, Hagemann M (1993) Effect of adaptation to different salt concentrations on photosynthesis and pigmentation of cyanobacterium Synechocystis sp. PCC 6803. J Plant Physiol 142:291–229

    Article  CAS  Google Scholar 

  • Schuurmans RM, van Alphen P, Schuurmans JM, Matthijs HCP, Hellingwerf KJ (2015) Comparison of the photosynthetic yield of cyanobacteria and green algae: different methods give different answers. PLoS One 10:e0139061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defence mechanism in plants under stressful conditions. J Bot 2012:217037

    Google Scholar 

  • Singh S, Mishra AK (2014) Regulation of calcium ion and its effect on growth and developmental behavior in wild type and ntcA mutant of Anabaena sp. PCC 7120 under varied levels of CaCl2. Microbiology 83:235–246

    Article  CAS  Google Scholar 

  • Smith RJ (1987) Calcium mediated regulation in the cyanobacteria. In: Rogers LJ, Gallon JR (eds) Biochemistry of the algae and cyanobacteria. Clarendon, Oxford, pp 185–199

    Google Scholar 

  • Stal LJ (2007) Cyanobacteria: diversity and versatility, clues to life in extreme environment. In: Seckbach J (ed) Algae and cyanobacteria in extreme environment. Springer, Dordrecht, pp 659–680.

    Chapter  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sudhir P, Murthy SDS (2004) Effects of salt stress on basic processes of photosynthesis. Photosynthetica 42:481–486

    Article  CAS  Google Scholar 

  • Sudhir PR, Pogoryelov D, Kovács L, Garab G, Murthy SDS (2005) The effects of salt stress on photosynthetic electron transport and thylakoid membrane proteins in the cyanobacterium Spirulina platensis. J Biochem Mol Biol 38:481–485

    PubMed  CAS  Google Scholar 

  • Tailor V, Ballal A (2015) Over-expression of Alr4642, a novel Prx-like peroxiredoxin, defends the cyanobacterium Anabaena PCC7120 from oxidative stress. J Appl Phycol 27:2261–2270

    Article  CAS  Google Scholar 

  • Tandeau de Marsac N (1994) Differentiation of hormogonia and relationships with other biological processes. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht, pp 825–842

    Chapter  Google Scholar 

  • Tang D, Shi S, Li D, Hu C, Liu Y (2007) Physiological and biochemical responses of Scytonema javanicum (cyanobacterium) to salt stress. J Arid Environ 71:312–320

    Article  Google Scholar 

  • Torrecilla I, Leganés F, Bonilla I, Fernández-Piñas F (2000) Use of recombinant aequorin to study calcium homeostasis and monitor calcium transients in response to heat and cold shock in cyanobacteria. Plant Physiol 123:161–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torrecilla I, Leganés F, Bonilla I, Fernández-Piñas F (2001) Calcium transients in response to salinity and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. PCC7120, expressing cytosolic apoaequorin. Plant Cell Environ 24:641–648

    Article  CAS  Google Scholar 

  • Victor G, Hugo S, Maria MO, Jose GL, Francisco P (2011) Changes in the fatty acid profile and antioxidant systems in a Nostoc muscurum strain exposed to the herbicide bentazon. Process Biochem 46:2152–2162

    Article  CAS  Google Scholar 

  • Wagner MA, Eschenbrenner M, Horn TA, Kraycer JA, Mujer CV, Hagius S, Elzer P, DelVecchio VG (2002) Global analysis of the Brucella melitensis proteome: identification of proteins expressed in laboratory-grown culture. Proteomics 2:1047–1060

    Article  PubMed  CAS  Google Scholar 

  • Warr SRC, Reed RH, Chudek JA, Foster R, Stewart WDP (1985) Osmotic adjustment in Spirulina platensis. Planta 163:424–429

    Article  PubMed  CAS  Google Scholar 

  • Wasim M, Bible AN, Xie Z, Alexandre G (2009) Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in Azospirillum brasilense Sp245. Microbiology 155:1192–1202

    Article  PubMed  CAS  Google Scholar 

  • Xiao Y, Liu Y, Wang G (2012) Involvement of nitric oxide in the mechanism of biochemical alterations induced by simulated microgravity in Microcystis aeruginosa. Adv Space Res 49:850–858

    Article  CAS  Google Scholar 

  • Zakar T, Laczko-Dobos H, Toth TN, Gombos Z (2016) Carotenoids assist in cyanobacterial photosystem II assembly and function. Front Plant Sci 7:295

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Head, Department of Botany, Banaras Hindu University, Varanasi, India, for providing laboratory facilities. We thank Prof. Karl Forchhammer, Department of Organismic Interactions (Microbiology), Interfaculty Institute of Microbiology and Infection, Auf der Morgenstelle, 2872076, University of Tübingen, Germany, for providing Synechococcus sp. PCC 7942 strain. Two of us (Ekta Verma and Balkrishna Tiwari) are thankful to the UGC, New Delhi for financial support in the form of SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun K. Mishra.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Fig. S1

Growth of the cyanobacterium estimated in terms of cell density at different NaCl concentrations showing 800 mM as inhibitory concentration for cyanobacterial growth. (GIF 12 kb)

High resolution image (TIFF 2442 kb)

Fig. S2

Growth of the cyanobacterium estimated in terms of cell density at different CaCl2 concentrations showing 1 mM as optimum concentration for cyanobacterial growth. (GIF 11 kb)

High resolution image (TIFF 2462 kb)

Fig. S3

DCF fluorescence-based G/R ratio of cyanobacterium obtained from fluorescence microscopic analysis under different treatment conditions. (GIF 5 kb)

High resolution image (TIFF 299 kb)

Fig. S4

The fluorescent intensity of ROS produced in Synechococcus cells under different treatment conditions estimated by fluorescence spectroscopic study of cyanobacterial cells. (GIF 8 kb)

High resolution image (TIFF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, E., Chakraborty, S., Tiwari, B. et al. Alleviation of NaCl toxicity in the cyanobacterium Synechococcus sp. PCC 7942 by exogenous calcium supplementation. J Appl Phycol 30, 1465–1482 (2018). https://doi.org/10.1007/s10811-018-1410-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-018-1410-9

Keywords

Navigation