Skip to main content
Log in

Chitin: a potential new alternative nitrogen source for the tertiary, algal-based treatment of pulp and paper mill wastewater

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Every day, pulp and paper mills in the USA discharge millions of liters of wastewater. Primary and secondary treatment of this wastewater often enriches it with phosphorus, resulting in uncontrolled eutrophication of receiving water bodies. A new method of tertiary wastewater treatment uses controlled growth of algae in a photobioreactor to sequester phosphorus into algal biomass, which is then harvested. This typically requires addition of a nitrogen fertilizer (nitrate, ammonium, or urea) to the water. We show on the laboratory scale that chitin can be used as an alternative source of nitrogen for the tertiary treatment of pulp mill wastewater using algae. We demonstrate that phosphorus can be efficiently removed from pulp wastewater using algae and chitin. Furthermore, phosphorus removal with chitin did not result in an increase in dissolved nitrogen in the wastewater because it is insoluble, unlike conventional nitrogen fertilizers. Despite its insolubility, it has recently been found that many diverse algae and cyanobacteria can use it as a source of nitrogen. Chitin has many advantages over conventional nitrogen fertilizers for use in wastewater treatment technologies. It is the second-most abundant natural polymer and is a waste product of the shellfish industry. Chitin is sustainable, inexpensive, and carbon neutral. Thus, chitin improves the sustainability and carbon footprints associated with water treatment, while the production of commercially attractive algal biomass helps to offset costs associated with the water treatment system itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ali M, Sreekrishnan TR (2001) Aquatic toxicity from pulp and paper mill effluents: a review. Adv Environ Res 5:175–196

    Article  CAS  Google Scholar 

  • Alonso IG, Vega DO (1990) Characterization of the main sources of chitin in Cuba. J Therm Anal 36:891–899

    Article  Google Scholar 

  • Arbib Z, Ruiz J, Alvarez-Diaz P, Garrido-Perez C, Barragan J, Perales JA (2013) Photobiotreatment: Influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliqus. Int J Phytorem 15:774–788

    Article  CAS  Google Scholar 

  • Barbosa R, Lapa N, Lopes H, Morujo A, Mendes B (2013) Removal of phosphorus from wastewaters by biomass ashes. Water Sci Technol 68:2019–2027

    Article  CAS  PubMed  Google Scholar 

  • Bellatty JM (2011) National pollutant discharge elimination system, waste discharge permit No. WA-000082-5. State of Washington, Department of Ecology, Olympia, WA.

  • Bhathena J, Driscoll BT, Charles TC, Archibald FS (2006) Effects of nitrogen and phosphorus limitation on the activated slude biomass in a Kraft mill biotreatment system. Water Environ Res 78:2303–2310

    Article  CAS  PubMed  Google Scholar 

  • Blanc G, Duncan G, Agarkova I, Borodovsky M, Gurnon J, Kuo A, Lindquist E, Lucas S, Pangilinan J, Polle J, Salamov A, Terry A, Yamada T, Dunigan DD, Grigoriev IV, Claverie JM, Van Etten JL (2010) The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943–2955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blank C (2011) An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 73:188–208

    Article  CAS  PubMed  Google Scholar 

  • Blank CE, Hinman NW (2016) Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Res. doi:10.1016/j.algal.2016.02.014

  • Borowitzka MA (2013) High-value products from microalgae—their development and commercialization. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Boβelmann F, Romano P, Fabritius H, Raabe D, Epple M (2007) The composition of the exoskeleton of two crustacea: the American lobster Homarus americanus and the edible crab Cancer pagurus. Thermochim Acta 463:65–68

    Article  Google Scholar 

  • Boyer JN (1994) Aerobic and anaerobic degradation and mineralization of 14C-chitin by water column and sediment inocula of the York River estuary, Virginia. Appl Environ Microbiol 60:174–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  PubMed  Google Scholar 

  • Clesceri LS, Greenberg AE, Eaton AD (eds) (1998) Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, 20th ed., 1325 p.

  • Di Termini I, Prassone A, Cattaneo C, Rovatti M (2011) On the nitrogen and phosphorus removal in algal photobioreactors. Ecol Eng 37:976–980

    Article  Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639

    Article  CAS  Google Scholar 

  • EPA (1998) National strategy for the development of regional nutrient criteria. EPA/822/R-98/002. US Environmental Protection Agency, Office of Water, Washington DC.

  • EPA (2000) Ambient water quality criteria recommendations. EPA 822-B-00-015. US Environmental Protection Agency, Office of Water, Washington DC.

  • EPA (2007) Advanced wastewater treatment to achieve low concentration of phosphorus. EPA 910-R-07-002. US Environmental Protection Agency, Office of Water and Watersheds, Seattle, WA.

  • Flores-Albino B, Arias L, Gomez J, Castillo A, Gimeno M, Shirai K (2012) Chitin and L(+)-lactic acid production from crab (Callinectes bellicosus) wastes by fermentation of Lactobacillus sp. B2 using sugar cane molasses as carbon source. Bioproc Biosyst Eng 35:1193–1200

    Article  CAS  Google Scholar 

  • Foster MH, Dailey CR, Klopping PH, Kirkpatrick SB (2003) Using respirometry to evaluate the impact of macronutrients application in pulp and paper aerated stabilization basins. 2003 Environmental Conference Proceedings, TAPPI Press, Atlanta.

  • Gavrilescu M, Teodosiu C, Gavrilescu D, Lupu L (2008) Strategies and practices for sustainable use of water in industrial papermaking processes. Eng Life Sci 8:99–124

    Article  CAS  Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Gentili FG (2014) Microalgal biomass and lipid production in mixed municipal, dairy, pulp and paper wastewater together with added flue gases. Bioresour Technol 169:27–32

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guillard RRL (1973) Division rates. In: Stein (ed) Handbook of Phycological Methods, volume 1. Cambridge University Press, Cambridge, pp 289–311

  • Han L, Pei H, Hu W, Han F, Song M, Zhang S (2014) Nutrient removal and lipid accumulation properties of newly isolated microalgal strains. Bioresour Technol 165:38–41

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu S, Ishihara M, Fumie M, Usami S, Yamada T (1999) Expression of a chitinase gene and lysis of the host cell wall during Chlorella virus CVK2 infection. Virology 260:308–315

    Article  CAS  PubMed  Google Scholar 

  • Hiramatsu S, Fujie M, Usami S, Sakai K, Yamada T (2000) Two catalytic domains of Chlorella virus CVK2 chitinase. J Biosci Bioeng 89:252–257

    Article  CAS  PubMed  Google Scholar 

  • Hoshi S, Konuma K, Sugawara K, Uto M, Akatsuka K (1997) The spectrophotometric determination of trace molybdenum (VI) after collection and elution as molybdate ion on protonated chitin. Talanta 44:1473–1478

    Article  CAS  PubMed  Google Scholar 

  • Huo YX, Wernick DG, Liao JC (2012) Toward nitrogen neutral biofuel production. Curr Opin Biotechnol 23:406–413

    Article  CAS  PubMed  Google Scholar 

  • Iehana M (1990) Kinetic-analysis of the growth of Chlorella vulgaris. Biotechnol Bioeng 36:198–206

    Article  Google Scholar 

  • International Energy Agency (2007) Tracking industrial energy efficiency and CO2 emissions. https://www.iea.org/publications/freepublications/publication/tracking-industrial-energy-efficiency-and-co2-emissions.html. Accessed 2 Dec 2015.

  • Joneson S, Armaleo D, Lutzoni F (2011) Fungal and algal gene expression in early developmental stages of lichen-symbiosis. Mycologia 103:291–306

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood AE, Nalewajko C, Fulthorpe RR (2005) The impacts of cyanobacteria on pulp-and-paper wastewater toxicity and biodegradation of wastewater contaminants. Can J Microbiol 51:531–540

    Article  CAS  PubMed  Google Scholar 

  • Kringstad KP, Lindstrom K (1984) Spent liquors from pulp bleaching. Environ Sci Technol 18:A236–A248

    Article  Google Scholar 

  • Lika K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146

    Article  CAS  Google Scholar 

  • Loganathan P, Vigneswaran S, Kandasamy J, Bolan NS (2014) Removal and recovery of phosphate from water using sorption. Crit Rev Environ Sci Technol 44:847–907

    Article  CAS  Google Scholar 

  • Lu Z, Li Y, Que Q, Kutish GF, Rock DL, Van Etten JL (1996) Analysis of 94 kb of the Chlorella virus PBCV-1 330-kb genome: Map positions 88 to 182. Virology 216:102–123

    Article  CAS  PubMed  Google Scholar 

  • Martínez ME, Sánchez S, Jiménez JM, El Yousfi F, Muñoz L (2000) Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour Technol 73:263–272

    Article  Google Scholar 

  • NOAA (2012) U.S. Annual commercial landing statistics. National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Silver Spring, MD.

  • Ojunga S, Masese FO, Manyala JO, Etiegni L, Onkware AO, Senelwa K, Raburu PO, Balozi BK, Omutange ES (2010) Impact of a Kraft pulp and paper mill effluent on phytoplankton and macroinvertebrates in River Nzoia, Kenya. Water Qual Res J Can 45:235–250

    CAS  Google Scholar 

  • Pate R, Klise G, Wu B (2011) Resource demand implications for US algae biofuels production scale-up. Appl Energ 88:3377–3388

    Article  CAS  Google Scholar 

  • Percot A, Viton C, Domard A (2003) Optimization of chitin extraction from shrimp shells. Biomacromolecules 4:12–18

    Article  CAS  PubMed  Google Scholar 

  • Pokhrel D, Viraraghavan T (2004) Treatment of pulp and paper mill wastewater—a review. Sci Total Environ 333:37–58

    Article  CAS  PubMed  Google Scholar 

  • Ramos Tercero EA, Sforza E, Morandini M, Bertucco A (2014) Cultivation of Chlorella protothecoides with urban wastewater in continuous photobioreactor: biomass productivity and nutrient removal. Appl Biochem Biotechnol 172:1470–1485

    Article  CAS  PubMed  Google Scholar 

  • Robertson LR, Schwingel WR (1997) Effect of water reuse on paper machine microbiology. 1997 Environmental Conference Proceedings, TAPPI Press, Atlanta.

  • Rupley JA (1964) Hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low molecular weight substrates for lysozyme. Biochim Biophys Acta 83:245–255

    CAS  PubMed  Google Scholar 

  • Slade AH, Ellis RJ, vanden Heuvel M, Stuthridge TR (2004) Nutrient minimisation in the pulp and paper industry: an overview. Water Sci Technol 50:111–122

    CAS  PubMed  Google Scholar 

  • Sorokin C, Krauss RW (1959) Maximum growth rates of Chlorella in steady-state and in synchronized cultures. Proc Natl Acad Sci U S A 45:1740–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84:1–5

    Article  CAS  PubMed  Google Scholar 

  • Thompson G, Swain J, Kay M, Forster CF (2001) The treatment of pulp and paper mill effluent: a review. Bioresour Technol 77:275–286

    Article  CAS  PubMed  Google Scholar 

  • Toivakainen S, Laukkanen T, Dahl O (2013) Simultaneous precipitation of phosphorus in a kraft pulp mill wastewater treatment plant. Water Sci Technol 67:299–305

    Article  CAS  PubMed  Google Scholar 

  • U.S. Energy Information Administration (2004) International energy statistics for natural gas. In https://www.eia.gov/cfapps/ipdbproject/iedindex3.cfm?tid=3&pid=26&aid=1&cid=ww,&syid=2004&eyid=2004&unit=QBTU. Accessed 2 Dec 2015.

  • Wartiovaara J, Heinonen P (1991) The eutrophication of pulp and paper waste-water recipients. Water Sci Technol 24:411–415

    CAS  Google Scholar 

  • Wood SW, Cowie A (2004) A review of greenhouse gas emission factors for fertilizer production. IEA Bioenergy Task 38:1–20

    Google Scholar 

  • Wu YQ, Hussain M, Fassihi R (2005) Development of a simple analytical methodology for determination of glucosamine release from modified release matrix tablets. J Pharm Biomed Anal 38:263–269

    Article  CAS  PubMed  Google Scholar 

  • Wu Y-H, Hu H-Y, Yu Y, Zhang T-Y, Zhu S-F, Zhuang L-L, Zhang X, Lu Y (2014) Microalgal species for sustainable biomass/lipid production using wastewater as resource: A review. Ren Sust Energ Rev 33:675–688

    Article  CAS  Google Scholar 

  • Xin L, Hu H-Y, Gan K, Sun Y-X (2010) Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour Technol 101:5494–5500

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gallert C, Winter J (2008) Chitin purification from shrimp wastes by microbial deproteination and decalcification. Appl Microbiol Biotechnol 79:687–697

    Article  CAS  PubMed  Google Scholar 

  • Yamada T, Hiramatsu S, Songsri P, Fujie M (1997) Alternative expression of a chitosanase gene produces two different proteins in cells infected with Chlorella virus CVK2. Virology 230:361–368

    Article  CAS  PubMed  Google Scholar 

  • Yin-Hu W, Jia Y, Hong-Ying H, Yin Y (2013) Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecol Eng 60:155–159

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kevin McGraw, Terry Cromwell, and Rick Johnson of ClearAs Water Recovery (Missoula, MT) and James Stephens and Adrienne Bull of Blue Marble Biomaterials (Missoula, MT) for assistance and support. We would also like to thank Alan Shiller, Center for Trace Analysis, University of Southern Mississippi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrine E. Blank.

Ethics declarations

Funding sources

R.W. Parks was supported by a Watkins Scholarship from the University of Montana Davidson Honors College. Additional funding was acquired through RocketHub.com (funded by Teresa and Randy Parks, Laura Memhard Fleming, Aaron Seltzer, David Heinrich Huning, Danielle Benjamin, Judy Glasgow, and Erika Hargadine) and through a grant (contract no. RRG-14-1554) from the Montana Department of Natural Resources and Conservation.

Conflict of interest

CEB and NWH declare they are listed as inventors under U.S. Patent Nos. 8,673,619 and 9,102,552 “Production of cyanobacterial or algal biomass using chitin as a nitrogen source” and U.S. Patent Application No. 14/818,011 “Process of treating Buchu Mercaptan production wastewater using microalgae and chitin as a nitrogen source.” RWP declares that he was an Environmental Technician at Inland Empire Paper Company from Jul 2014 until Jun 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blank, C.E., Parks, R.W. & Hinman, N.W. Chitin: a potential new alternative nitrogen source for the tertiary, algal-based treatment of pulp and paper mill wastewater. J Appl Phycol 28, 2753–2766 (2016). https://doi.org/10.1007/s10811-016-0808-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0808-5

Keywords

Navigation