Skip to main content
Log in

Microalgal industry in China: challenges and prospects

  • 1st International Coastal Biology Congress, Yantai, China
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Over the past 15 years, China has become the major producer of microalgal biomass in the world. Spirulina (Arthrospira) is the largest microalgal product by tonnage and value, followed by Chlorella, Dunaliella, and Haematococcus, the four main microalgae grown commercially. China’s production is estimated at about two-thirds of global microalgae biomass of which roughly 90 % is sold for human consumption as human nutritional products (‘nutraceuticals’), with smaller markets in animal feeds mainly for marine aquaculture. Research is also ongoing in China, as in the rest of the world, for other high-value as well as commodity microalgal products, from pharmaceuticals to biofuels and CO2 capture and utilization. This paper briefly reviews the main challenges and potential solutions for expanding commercial microalgae production in China and the markets for microalgae products. The Chinese Microalgae Industry Alliance (CMIA), a network founded by Chinese microalgae researchers and commercial enterprises, supports this industry by promoting improved safety and quality standards, and advancement of technologies that can innovate and increase the markets for microalgal products. Microalgae are a growing source of human nutritional products and could become a future source of sustainable commodities, from foods and feeds, to, possibly, fuels and fertilizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali SK, Saleh AM (2012) Spirulina—an overview. Int J Pharm Sci 4:9–15

    CAS  Google Scholar 

  • Bao YL, Liu M, Wu X, Cong W, Ning ZX (2012) In situ carbon supplementation in large scale cultivations of Spirulina platensis in open raceway pond. Biotechnol Bioprocess Eng 17:93–99

    Article  CAS  Google Scholar 

  • Belay A (2013) Biology and industrial production of Arthrospira (Spirulina). In: Richmondand A, Hu Q (eds) Handbook of microalgae culture, 2nd edn. Wiley, New York, pp 339–358

    Chapter  Google Scholar 

  • Belay A, Ota Y, Miyakawa K, Shimamatsu H (1993) Current knowledge on potential health benefits of Spirulina. J Appl Phycol 5:235–241

    Article  Google Scholar 

  • Ben Amotz A, Lers A, Avron M (1988) Stereoisomers of beta-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benemann JR (1992) Microalgae aquaculture feeds. J Appl Phycol 4:233–245

    Article  Google Scholar 

  • Borowitzka MA (1997) Microalgae for aquaculture: opportunities and constraints. J Appl Phycol 9:393–401

    Article  Google Scholar 

  • Borowitzka MA (2013a) High-value products from microalgae-their development and commercialisation. J Appl Phycol 25:743–756

    Article  CAS  Google Scholar 

  • Borowitzka MA (2013b) Dunaliella: Biology, production, and markets. In: Richmond A, Hu Q (eds) Handbook of microalgal culture. John Wiley & Sons, Ltd, pp 359–368

  • Borowitzka LJ, Borowitzka MA (1990) Commercial production of β-carotene by Dunaliella salina in open ponds. Bull Mar Sci 47:244–252

    Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Burr GS, Wolters WR, Barrows FT, Hardy RW (2012) Replacing fishmeal with blends of alternative proteins on growth performance of rainbow trout (Oncorhynchus mykiss), and early or late stage juvenile Atlantic salmon (Salmo salar). Aquaculture 334:110–116

    Article  Google Scholar 

  • Chen JW, Li BZ (2014) China’s food safety standard system: problems and solutions. Food Sci 35(9):334–338 (in Chinese)

    Google Scholar 

  • Glazer AN (1994) Phycobiliproteins—a family of valuable, widely used fluorophores. J Appl Phycol 6:105–112

    Article  CAS  Google Scholar 

  • Han FF, Wang WL, Li YG, Shen GM, Wan MX, Wang J (2013) Changes of biomass, lipid content and fatty acids composition under a light-dark cyclic culture of Chlorella pyrenoidosa in response to different temperature. Bioresour Technol 132:182–189

    Article  CAS  PubMed  Google Scholar 

  • Han W, Li CY, Miao XL, Yu GX (2012) A novel miniature culture system to screen CO2-sequestering microalgae. Energies 5:4372–4389

    Article  CAS  Google Scholar 

  • Hemaiswarya S, Raja R, Kumar RR, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Article  Google Scholar 

  • Holman BWB, Malau-Aduli AEO (2013) Spirulina as a livestock supplement and animal feed. J Anim Physiol Anim Nutr 97:615–623

    Article  CAS  Google Scholar 

  • Hu HJ (2003) Biological and biotechnological principles on Spirulina. Science Press, Beijing, pp 9–12

    Google Scholar 

  • Hu L, Huang B, Zuo MM, Guo RY, Wei H (2008) Preparation of the phycoerythrin subunit liposome in a photodynamic experiment on liver cancer cells. Acta Pharmacol Sin 29:1539–1546

    Article  CAS  PubMed  Google Scholar 

  • Ip PF, Chen F (2005) Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark. Process Biochem 40:733–738

    Article  CAS  Google Scholar 

  • Jiang Y, Chen F, Liang SZ (1999) Production potential of docosahexaenoic acid by the heterotrophic marine dinoflagellate Crypthecodinium cohnii. Process Biochem 34:633–637

    Article  CAS  Google Scholar 

  • Jiang Y, Zhang W, Wang J, Chen Y, Shen S, Liu T (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364

    Article  CAS  PubMed  Google Scholar 

  • Li DM, Qi YZ (1997) Spirulina industry in China: present states and future prospects. J Appl Phycol 9:25–28

    Article  CAS  Google Scholar 

  • Li SW, Luo SJ, Guo RB (2013) Efficiency of CO2 fixation by microalgae in a closed raceway pond. Bioresour Technol 136:267–272

    Article  CAS  PubMed  Google Scholar 

  • Li YG, Xu L, Huang YM, Wang F, Guo C, Liu CZ (2011) Microalgal biodiesel in China: opportunities and challenges. Appl Energy 88:3432–3437

    Article  CAS  Google Scholar 

  • Liang SZ, Liu XM, Chen F, Chen ZJ (2004) Current microalgal health food R&D activities in China. Hydrobiologia 512:45–48

    Article  Google Scholar 

  • Liu TZ, Wang JF, Hu Q, Cheng PF, Ji B, Liu JL, Chen Y, Zhang W, Chen XL, Chen L, Gao LL, Ji CL, Wang H (2013) Attached cultivation technology of microalgae for efficient biomass feedstock production. Bioresour Technol 127:216–222

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Liu JG, Lin W, Wang Z, Li YY, Shi PJ, Xue YB, Cui XJ (2006) Technological assembly and its application in a pilot scale culture of Haematococcus pluvialis. Feed Ind 12:12–17 (in Chinese)

    CAS  Google Scholar 

  • Lorenz RT, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Lu YM, Xiang WZ, Wen YH (2011) Spirulina (Arthrospira) industry in Inner Mongolia of China: current status and prospects. J Appl Phycol 23:265–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotechnol Adv 31:1532–1542

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Rath B (2012) Commercial and industrial applications of microalgae—a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Ribeiro BD, Barreto DW, Coelho MAZ (2011) Technological aspects of beta-carotene production. Food Bioprocess Tech 4:693–701

    Article  CAS  Google Scholar 

  • Santiago-Santos MC, Ponce-Noyola T, Olvera-Ramirez R, Ortega-Lopez J, Canizares-Villanueva RO (2004) Extraction and purification of phycocyanin from Calothrix sp. Process Biochem 39:2047–2052

    Article  CAS  Google Scholar 

  • Schlipalius L (1991) The extensive commercial cultivation of Dunaliella salina. Bioresour Technol 38:241–243

    Article  CAS  Google Scholar 

  • Sekar S, Chandramohan M (2008) Phycobiliproteins as a commodity: trends in applied research, patents and commercialization. J Appl Phycol 20:113–136

    Article  Google Scholar 

  • Shao M, Zhang H, Yang J, Zhang Y, Liu Z, Qin S (2013a) Optimization of the ultrasonic wave extraction technology of the phycocyanin from Spirulina (Arthrospia) using response surface analysis. J Biol 4:93–96 (in Chinese)

  • Shao M, Zhao N, Li Y, Gu Y, Liu Z, Qin S (2013b) A single step chromatography for the purification of phycocyanin from Arthrospira platensis. J Biol 5:59–63 (in Chinese)

    Google Scholar 

  • Shi XM, Liu HJ, Zhang XW, Chen F (1999) Production of biomass and lutein by Chlorella protothecoides at various glucose concentrations in heterotrophic cultures. Process Biochem 34:341–347

    Article  CAS  Google Scholar 

  • Su ZF, Kang RJ, Shi SY, Cong W, Cai ZL (2008) An economical device for carbon supplement in large-scale microalgae production. Bioprocess Biosyst Eng 31:641–645

    Article  CAS  PubMed  Google Scholar 

  • Tang G, Suter P (2011) Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. J Pharm Nutr 1:111–118

    CAS  Google Scholar 

  • Tang Z, Zhou Y, Zhou H, Jiao X, Ju B, Qin S (2012) Preparation of antioxidant peptides from phycocyanin by enzymatic hydrolysis. Food Sci Technol 11:241–244 (in Chinese)

    Google Scholar 

  • Wang Y, Peng J (2008) Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chlorophyta). World J Microb Biotechnol 24:1915–1922

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 329:796–799

    Article  CAS  PubMed  Google Scholar 

  • Wynn J, Behrens P, Sundararajahn A, Hansen J, Apt K (2005) Production of single cell oils from dinoflagellates. In: Cohen Z, Rutledge C (eds) Single cell oils. AOCS Press, Urbana, pp 115–129

    Google Scholar 

  • Yan MY, Liu B, Jiao XD, Qin S (2014) Preparation of phycocyanin microcapsules and its properties. Food Bioprod Process 92:89–97

    Article  CAS  Google Scholar 

  • Yin WQ, Liu YF, Li BQ, Xin NH (2013) The status and prospects of comprehensive utilization of algae Dunaliella salina in China. J Salt Chem Ind 12:1–3 (in Chinese)

    Google Scholar 

  • Yu JZ, Liang XX, Chen F, Wei D (2013) Evaluation of the preservation methods for two microalgal concentrates. Modern Food Sci Technol 5:948–952 (in Chinese)

    Google Scholar 

  • Zhang XC, Xue MX (2012) Spirulina industry in China current statues and prospects. Biotechnology & Business 2(3):48–54 (in Chinese)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (408760862) and Public Science and Technology Research Funds Projects of the Ocean (201205027). We also wish to thank Inner Mongolia Rejuv Biotech Co. Ltd and Yantai Hearol Biology Technology Co. Ltd for permitting us to use the pictures in Figs. 2 and 4. We are grateful to King Dnarmsa Spirulina Co. Ltd for supplying us the pictures Fig. 3 and Prof. Jianguo Liu (Institute of Oceanology, Chinese Academy of Sciences, Qingdao) for supplying us Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Qin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Wang, Y., Benemann, J.R. et al. Microalgal industry in China: challenges and prospects. J Appl Phycol 28, 715–725 (2016). https://doi.org/10.1007/s10811-015-0720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0720-4

Keywords

Navigation