Skip to main content
Log in

Raman microspectroscopy of algal lipid bodies: β-carotene quantification

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Advanced optical instruments can serve for analysis and manipulation of individual living cells and their internal structures. We have used Raman microspectroscopic analysis for assessment of β-carotene concentration in algal lipid bodies (LBs) in vivo. Some algae contain β-carotene in high amounts in their LBs, including strains which are considered useful in biotechnology for lipid and pigment production. We have devised a simple method to measure the concentration of β-carotene in a mixture of algal storage lipids from the ratio of their Raman vibrations. This finding may allow fast acquisition of β-carotene concentration valuable, e.g., for Raman microspectroscopy assisted cell sorting for selection of the overproducing strains. Furthermore, we demonstrate that β-carotene concentration can be proportional to LB volume and light intensity during the cultivation. We combine optical manipulation and analysis on a microfluidic platform in order to achieve fast, effective, and non-invasive sorting based on the spectroscopic features of the individual living cells. The resultant apparatus could find its use in demanding biotechnological applications such as selection of rare natural mutants or artificially modified cells resulting from genetic manipulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Becker EW (2007) Micro-algae as a source of protein. Biotechnol Adv 25:207–210

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Avron M (1983) On the factors which determine massive β-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol 72:593–597

    Article  PubMed  CAS  Google Scholar 

  • Ben-Amotz A, Lers A, Avron M (1988) Stereoisomers of β-carotene and phytoene in the alga Dunaliella bardawil. Plant Physiol 86:1286–1291

    Article  PubMed  CAS  Google Scholar 

  • Bischoff HW, Bold HC (1963) Phycological studies IV. Some soil algae from Enchanted Rock and related algal species. Univ Texas Publ 6318:1–95

    Google Scholar 

  • Bold HC (1949) The morphology of Chlamydomonas chlamydogama sp. nov. Bull Torrey Bot Club 76:101–108

    Article  Google Scholar 

  • Brandt NN, Brovko OO, Chikishev AY, Paraschuk OD (2006) Optimization of the rolling-circle filter for Raman background subtraction. Appl Spectrosc 60:288–293

    Article  PubMed  CAS  Google Scholar 

  • Carvalho AP, Malcata FX (2005) Optimization of x-3 fatty acid production by microalgae: crossover Effects of CO2 and light intensity under batch and continuous cultivation modes. Mar Biotechnol 7:381–388

    Article  PubMed  CAS  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • Elsey D, Jameson D, Raleigh B, Cooney MJ (2007) Fluorescent measurement of microalgal neutral lipids. J Microbiol Methods 68:639–642

    Article  PubMed  CAS  Google Scholar 

  • Fuentes MMR, Fernandez GGA, Perez JAS, Guerrero JLG (2000) Biomass nutrient profiles of the microalga Porphyridium cruentum. Food Chem 70:345–353

    Article  Google Scholar 

  • Garcia-Malea MC, Brindley C, Del Rio E, Acien FG, Fernandez JM, Molina E (2005) Modeling of growth and accumulation of carotenoids in Haematococcus pluvialis as a function of irradiance and nutrients supply. Biochem Eng J 26:107–114

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  • Guiheneuf F, Mimouni V, Ulmann L, Tremblin G (2009) Combined effects of irradiance level and carbon source on fatty acid and lipid class composition in the microalga Pavlova lutheri commonly used in mariculture. J Exp Mar Biol Ecol 369:136–143

    Article  CAS  Google Scholar 

  • Heraud P, Beardall J, McNaughton D, Wood BR (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30

    Article  PubMed  CAS  Google Scholar 

  • Huang GH, Chen G, Chen F (2009) Rapid screening method for lipid production in alga based on Nile Red fluorescence. Biomass Bioener 33:1386–1392

    Article  CAS  Google Scholar 

  • Huang YY, Beal CM, Cai WW, Ruoff RS, Terentjev EM (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotech Bioeng 105:889–898

    CAS  Google Scholar 

  • Lamers PP, van de Laak CCW, Kaasenbrood PS, Lorier J, Janssen M, De Vos RCH, Bino RJ, Wijffels RH (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotech Bioeng 106:638–648

    Article  CAS  Google Scholar 

  • Lers A, Biener Y, Zamir A (1990) Photoinduction of massive β-carotene accumulation by the alga Dunaliella bardawil. Plant Physiol 93:389–395

    Article  PubMed  CAS  Google Scholar 

  • Parker SF, Tavender SM, Dixon NM, Herman H, Williams KPJ, Maddams WF (1999) Raman spectrum of β-carotene using laser lines from green (514.5 nm) to near-infrared (1064 nm): implications for the characterization of conjugated polyenes. Appl Spectroscopy 53:86–91

    Article  CAS  Google Scholar 

  • Rabbani S, Beyer Pv, Lintig J, Hugueney P, Kleinig H (1998) Induced β-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Rezanka T, Petrankova M, Cepak V, Pribyl P, Sigler K, Cajthaml T (2010) Trachydiscus minutus, a new biotechnological source of eicosapentaenoic acid. Folia Microbiol 55:265–269

    Article  CAS  Google Scholar 

  • Samek O, Jonas A, Pilat Z, Zemanek P, Nedbal L, Triska J, Kotas P, Trtilek M (2010) Raman microspectroscopy of individual algal cells: sensing unsaturation of storage lipids in vivo. Sensors 10:8635–8651

    Article  PubMed  CAS  Google Scholar 

  • Samek O, Zemanek P, Jonas A, Telle HH (2011) Characterization of oil-producing microalgae using Raman spectroscopy. Laser Phys Lett 8:701–709

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Setlik I (1967) Contamination of algal cultures by heterotrophic microorganisms and its prevention. Ann. Rep. Algol. F. Y. 1966, Trebon, CSAV, Inst. Microbiol.: 89–100.

  • Solovchenko AE, Khozin-Goldberg I, Cohen Z, Merzlyak MN (2009) Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J Appl Phycol 21:361–366

    Article  CAS  Google Scholar 

  • Solovchenko AE, Khozin-Goldberg I, Recht L, Boussiba S (2011) Stress-induced changes in optical properties, pigment and fatty acid content of Nannochloropsis sp.: implications for non-destructive assay of total fatty acids. Mar Biotech 13:527–535

    Article  CAS  Google Scholar 

  • Su CH, Fu CC, Chang YC, Nair GR, Ye JL, Chu IM, Wu WT (2008) Simultaneous estimation of chlorophyll a and lipid contents in microalgae by three-color analysis. Biotech Bioeng 99:1034–1039

    Article  CAS  Google Scholar 

  • Wu H, Volponi JV, Oliver AE, Parikh AN, Simmons BA, Singh S (2011) In vivo lipidomics using single-cell Raman spectroscopy. Proc Nat Ac Sci 108:3809–3814

    Article  CAS  Google Scholar 

  • Xie C, Goodman C, Dinno MA, Li YQ (2004) Real-time Raman spectroscopy of optically trapped living cells and organelles. Optical Express 25:6208–6214

    Article  Google Scholar 

  • Yeh KL, Chang JS, Chen WM (2010) Effect of light supply and carbon source on cell growth and cellular composition of a newly isolated microalga Chlorella vulgaris ESP-31. Eng Life Sci 10:201–208

    Article  CAS  Google Scholar 

Download references

Acknowledgments

These activities were partially supported by the Czech Ministry of Industry and Trade (FR-TI1/433) and the Ministry of Education, Youth, and Sports of the Czech Republic, together with the European Commission (ALISI No. CZ.1.05/2.1.00/01.0017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zdeněk Pilát.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilát, Z., Bernatová, S., Ježek, J. et al. Raman microspectroscopy of algal lipid bodies: β-carotene quantification. J Appl Phycol 24, 541–546 (2012). https://doi.org/10.1007/s10811-011-9754-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-011-9754-4

Keywords

Navigation