Skip to main content
Log in

Modeling growth and photosynthetic response in Arthrospira platensis as function of light intensity and glucose concentration using factorial design

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Combined effect of light intensity and glucose concentration on Arthrospira platensis growth and photosynthetic response was evaluated using a 32 factorial design. This design was carried out with light levels of 50, 100, and 150 µmol photons m−2 s−1 and glucose concentrations of 0.5, 1.5, and 2.5 g L−1. Results from the response surface methodology were that the highest level of light intensity and glucose concentration improved biomass (1.33 g L−1), maximum specific growth rate (0.49 day−1), and net photosynthetic rate (139.89 µmol O2 mg Chl−1 h−1). Furthermore, the interaction of both factors showed that at low light, glucose had a low effect on maximum biomass and maximal net photosynthetic rate. However, at the highest light levels, the effect of glucose was more sensitive and the increase of glucose concentration increased the levels of all responses. The rates of the instantaneous relative growth, net photosynthesis, and dark respiration of growth cultures showed two different phases in mixotrophic condition. The first was distinguished by the preponderance of the photoautotrophic mode; the second was based mainly on photoheterotrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrade MR, Costa JAV (2007) Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture 264:130–134

    Article  Google Scholar 

  • Box GEP, Draper NR (1987) Empirical model building and response surfaces. Wiley, New York

    Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb Technol 20:221–224

    Article  CAS  Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol Lett 18:603–608

    Article  CAS  Google Scholar 

  • Chojnacka K (2003) Heavy metal ions removal by microalgae Spirulina sp. in the processes of biosorption and bioaccumulation. PhD dissertation, Wroclaw University of Technology, Poland

  • Chojnacka K, Marquez-Rocha FJ (2004) Kinetic and stoichiometric relationships of the energy and carbon metabolism in the culture of microalgae. Biotechnology 3:21–34

    Article  Google Scholar 

  • Chojnacka K, Noworyta A (2004) Evaluation of Spirulina sp. Growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme Microb Technol 34:461–465

    Article  CAS  Google Scholar 

  • Danesi EDG, Rangel-Yangui CO, Carvalho JCM, Sato S (2004) Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenerg 26:329–335

    Article  CAS  Google Scholar 

  • Hase R, Oikawa O, Sasao C, Morita M, Watanabe Y (2000) Photosynthetic production of microalgal biomass in a raceway system under greenhouse conditions in Sendai city. J Biosci Bioeng 89:157–163

    Article  CAS  PubMed  Google Scholar 

  • Hata JI, Hua Q, Yang C, Shimizu K, Taya M (2000) Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells, Marchantia polymorpha. Biochem Eng J 6:65–74

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Wang J, Shi D, Cong W, Cai Z, Ouyang F (2004) Interaction between organic and inorganic carbon sources during mixotrophic cultivation of Synechococcus sp. Biotechnol Lett 26:1429–1432

    Article  CAS  PubMed  Google Scholar 

  • Leduy A, Therien N (1977) An improved method for optical density measurement of the semimicroscopic blue green algae Spirulina maxima. Biotechnol Bioeng 19:1219–1224

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Packer L, Douce R (eds) Methods in enzymology, Vol 148. Academic Press, New York, pp 350–382

    Google Scholar 

  • Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effect of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246

    Article  Google Scholar 

  • Lodi A, Binaghi L, De Faveri D, Carvalho JCM, Converti A, Del Borghi M (2005) Fed-batch mixotrophic cultivation of Arthrospira (Spirulina) platensis (Cyanophyceae) with carbon source pulse feeding. Ann Microbiol 55(3):181–185

    CAS  Google Scholar 

  • Marquez FJ, Sasaki K, Kakizono T, Nishio N, Nagai S (1993) Growth characteristics of Spirulina platensis in mixotrophic and heterotrophic conditions. J Ferment Bioeng 76:408–410

    Article  CAS  Google Scholar 

  • Marquez FJ, Nishio N, Nagai S, Sasaki K (1995) Enhancement of biomass and pigment production during growth of Spirulina platensis mixotrophic culture. J Chem Tech Biotech 62:159–164

    Article  CAS  Google Scholar 

  • Martinez F, Orus MI (1991) Interactions between glucose and inorganic carbon metabolism in Chlorella vulgaris strain UAM 101. Plant Physiol 95:1150–1155

    Article  CAS  PubMed  Google Scholar 

  • Martinez F, Camacho F, Jiménez JM, Espinola JB (1997) Influence of light intensity on the kinetic and yield parameters of Chlorella pyrenoidosa mixotrophic growth. Process Biochem 32:93–98

    Article  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Orus MI, Marco E, Martinez F (1991) Suitability of Chlorella vulgaris UAM 101 for heterotrophic biomass production. Bioresour Technol 38:179–184

    Article  CAS  Google Scholar 

  • Pelroy RA, Rippka R, Stanier RY (1972) Metabolism of glucose by unicellular blue-green algae. Archiv für Mikrobiologie 87:303–322

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (1988) Spirulina. In: Borowitzka MA, Borowitzka LJ (eds) Micro-Algal biotechnology. Cambrige University Press, Cambridge, pp 85–121

    Google Scholar 

  • Vonshak A, Guy R, Guy M (1988) The response of the filamentous cyanobacterium Spirulina platensis to salt stress. Arch Microbiol 150:417–420

    Article  Google Scholar 

  • Vonshak A, Cheung SM, Chen F (2000) Mixotrophic growth modifies the response of Spirulina (Arthrospira) platensis (cyanobacteria) cells to light. J Phycol 36:675–679

    Article  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light–autotrophic/dark–heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Jia S, Dai Y (2009) Growth characteristics of the cyanobacterium Nostoc flagelliforme in photoautotrophic, mixotrophic and heterotrophic cultivation. J Appl Phycol 21:127–133

    Article  CAS  Google Scholar 

  • Zarrouk C (1966) Contribution à l’étude d’une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima Geitler. PhD thesis, University of Paris

  • Zhang XW, Zhang YM, Chen F (1999) Application of mathematical models to the determination optimal glucose concentration and light intensity for mixotrophic culture of Spirulina platensis. Process Biochem 34:477–481

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Kristina Raab, researcher in Wageningen IMARES, for her considerable comments in improving the language of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Dhiab Rym.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rym, B.D., Nejeh, G., Lamia, T. et al. Modeling growth and photosynthetic response in Arthrospira platensis as function of light intensity and glucose concentration using factorial design. J Appl Phycol 22, 745–752 (2010). https://doi.org/10.1007/s10811-010-9515-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-010-9515-9

Keywords

Navigation