Skip to main content
Log in

Preliminary study of electrochemical conversion of glucose on novel modified nickel electrodes

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Gluconic acid and sorbitol are among the value-added chemicals that can be derived from biomass. Nowadays, these compounds are typically produced through biotechnological processes, but electrochemical methods offer numerous advantages over alternative approaches. While studies have extensively explored metals like copper, palladium, gold, and platinum, nickel has received relatively limited attention in this context. Notably, nickel exhibits electrochemical activity suitable for organic electrosynthesis. This work has been achieved with 5-h long-term electrolysis, glucose as a reactant, utilizing modified nickel electrodes in a KOH solution. While these studies achieved substantial conversion rates, the selectivities and Faraday efficiencies toward gluconic acid and sorbitol remained comparatively low. The long-term electrolysis of glucose using modified nickel electrodes resulted in the identification of various side products. These include formic acid, oxalic acid, glycolic acid, tartronic acid, glyceric acid, and arabinose.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Werpy T, Petersen G (2004) Energy efficiency and renewable energy, Volume 1 -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. United States: N. p., Web. https://doi.org/10.2172/15008859

  2. Taylor R, Nattrass L, Alberts G (2015) From the Sugar Platform to Biofuels and Biochemicals: Final Report for the European Commission Directorate-General Energy, No. ENER/C2/423-2012/SI2.673791, E4tech/ReCORD/Wageningen UR - 183

  3. Ahuja K, Singh S (2018) Gluconic acid market by application, by downstream potential, regional outlook, application potential, price trend, competitive market share & forecast, 2018–2024. Global Market Insights Inc, Selbyville, p 240

    Google Scholar 

  4. Marques C, Tarek R, Sara M, Brar SK (2016) Sorbitol production from biomass and its global market, platform chemical biorefinery. Elsevier, Amsterdam

    Google Scholar 

  5. Hustede H, Haberstroh H-J, Schinzig E (2007) Ullmann’s encyclopedia of industrial chemistry, 7th edtion. Wiley, Hoboken

    Google Scholar 

  6. Climent MJ, Corma A, Iborra S (2011) Green Chem 13:520–540

    Article  CAS  Google Scholar 

  7. Cardoso DSP, Šljukić B, Santos DMF, Sequeira CAC (2017) Org Process Res Dev 21:1213–1226

    Article  CAS  Google Scholar 

  8. Lucas FWS, Gary Grim R, Tacey SA, Downes CA, Hasse J, Roman AM, Farberow CA, Schaidle JA, Holewinski A (2021) ACS Energy Lett 6:1205–1270

    Article  CAS  Google Scholar 

  9. Prabhu P, Wan Y, Lee J-M (2020) Matter 3:1162–1177

    Article  Google Scholar 

  10. Taitt BJ, Nam D-H, Choi K-S (2019) ACS Catal 9:660–670

    Article  CAS  Google Scholar 

  11. Latsuzbaia R, Bisselink R, Anastasopol A, van der Meer H, van Heck R, Segurola Yagüe M, Zijlstra M, Roelands M, Crockatt M, Goetheer E, Giling E (2018) J Appl Electrochem 48:611–626

    Article  CAS  Google Scholar 

  12. Dai C, Sun L, Liao H, Khezri B, Webster RD, Fisher AC, Xu ZJ (2017) J Catal 356:14–21

    Article  CAS  Google Scholar 

  13. Talebian-Kiakalaieh A, Amin NAS, Rajaei K, Tarighi S (2018) Appl Energy 230:1347–1379

    Article  ADS  CAS  Google Scholar 

  14. Qiu Y, Xin L, Chadderdon DJ, Qi J, Liang C, Li W (2014) Green Chem 16:1305–1315

    Article  CAS  Google Scholar 

  15. dos Santos TR, Nilges P, Sauter W, Harnisch F, Schroder U (2015) RSC Adv 5:26634–26643

    Article  ADS  Google Scholar 

  16. Governo AT, Proença L, Parpot P, Lopes MIS, Fonseca ITE (2004) Electrochim Acta 49:1535–1545

    CAS  Google Scholar 

  17. Rafaïdeen T, Baranton S, Coutanceau C (2019) Appl Catal B 243:641–656

    Article  Google Scholar 

  18. Neha N, Rafaïdeen T, Faverge T, Maillard F, Chatenet M, Coutanceau C (2023) Electrocatalysis 14:121–130

    Article  CAS  Google Scholar 

  19. Faverge T, Gilles B, Bonnefont A, Maillard F, Coutanceau C, Chatenet M (2023) ACS Catal 13:2657–2669

    Article  CAS  Google Scholar 

  20. Sanghez de Luna G, Ho PH, Sacco A, Hernandez S, Velasco-Vélez J-J, Ospitali F, Paglianti A, Albonetti S, Fornasari G, Benito P, Appl ACS (2021) ACS Appl Mater Interfaces 13:23675–23688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lund T, Lund H (1985) Acta Chemica Scandinavica B 39:429–435

    Article  Google Scholar 

  22. Pintauro PN, Johnson DK, Park K, Baizer MM, Nobe K (1984) J Appl Electrochem 14:209–220

    Article  CAS  Google Scholar 

  23. Rudge AJ (1971). In: Kuhn AT (ed) Industrial electrochemical processes. Elsevier, Amsterdam

    Google Scholar 

  24. Li K, Sun Y (2018) Chem Eur J 24:18258–18270

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR (2018) Angew Chem Int Ed 57:6018–6041

    Article  Google Scholar 

  26. Park K, Pintauro PN, Baizer MM, Nobe K (1985) J Electrochem Soc 132:1850–1855

    Article  CAS  Google Scholar 

  27. Moggia G, Kenis T, Daems N, Breugelmans T (2020) ChemElectroChem 7:86–95

    Article  CAS  Google Scholar 

  28. Bonomo M (2018) J Nanopart Res 20:222

    Article  Google Scholar 

  29. Wang D, Yan W, Vijapur SH, Botte GG (2012) J Power Sources 217:498–502

    Article  CAS  Google Scholar 

  30. Schranck A, Marks R, Yates E, Doudrick K (2018) Environ Sci Technol 52(15):8638–8648

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Wu M-S, Lin G-W, Yang R-S (2014) J Power Sources 272:711–718

    Article  CAS  Google Scholar 

  32. De Los Santos Meran S (2021) Production d'hydrogène par électrolyse en continu de l'urée sur électrode de nickel modifiée. PhD thesis, INSA Rouen

  33. AFNOR (2013). Qualité de l'eau : Estimation de l'incertitude de mesure basée sur des données de validation et de contrôle qualité. NF ISO 11352. La plaine Saint Denis

  34. Vedovato V, Vanbroekhoven K, Pant D, J., Helsen, (2020) Molecules 25:3712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lichtenthaler FW (2010) Carbohydrates: occurrence, structures and chemistry. Ullmann’s encyclopaedia of industrial chemistry. . Wiley, Hoboken, pp 1–3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

EG and PC wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Erwann Ginoux.

Ethics declarations

Competing interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginoux, E., Acosta, G., Cognet, P. et al. Preliminary study of electrochemical conversion of glucose on novel modified nickel electrodes. J Appl Electrochem (2024). https://doi.org/10.1007/s10800-024-02083-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10800-024-02083-2

Keywords

Navigation