Skip to main content
Log in

Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Plasmonic enhancement is an effective method to improve the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). The size and amount of plasmon play key roles in plasmonic effect; however, the report on the relationship between morphology and processing of plasmon is rare. In this work, a series of Au nanoparticles (NPs) inlaid into TiO2 nanotube (NT) based photoanodes have been synthesized through tuning HAuCl4 solution concentration and irradiation time during the photoreduction process. Meanwhile, the optical and photoelectrical properties of these plasmonic DSSCs have also been verified. The results demonstrate that the optimized plasmonic DSSC (irradiation time: 5 min, solution concentration: 0.5 mM) showed a 19.0% improvement of PCE, compared to the reference DSSC without Au NPs. The improved PCE is mainly attributed to the enhanced photocurrent generated by surface plasmon resonance (SPR) effect of small sized Au NPs as well as light scattering effect of large sized particles.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fang Y, Seong N-H, Dlott DD (2008) Science 321(5887):388–392

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H (2014) Nanoscale 6(1):616–623

    Article  CAS  PubMed  Google Scholar 

  3. Seh ZW, Liu S, Low M, Zhang S-Y, Liu Z, Mlayah A, Han M-Y (2012) Adv Mater 24(17):2310–2314

    Article  CAS  PubMed  Google Scholar 

  4. Liu Z, Hou W, Pavaskar P, Aykol M, Cronin SB (2011) Nano Lett 11(3):1111–1116

    Article  CAS  PubMed  Google Scholar 

  5. Wang MY, Pang XC, Zheng DJ, He YJ, Sun L, Lin CJ, Lin ZQ (2016) J Phys Chem A 4(19):7190–7199

    CAS  Google Scholar 

  6. Atwater HA, Polman A (2010) Nat Mater 9(3):205–213

    Article  CAS  PubMed  Google Scholar 

  7. Ihara M, Tanaka K, Sakaki K, Honma I, Yamada K (1997) J Phys Chem B 101(26):5153–5157

    Article  CAS  Google Scholar 

  8. Hou W, Pavaskar P, Liu Z, Theiss J, Aykol M, Cronin SB (2011) Energy Environ Sci 4(11):4650–4655

    Article  CAS  Google Scholar 

  9. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2008) Accounts Chem Res 41(12):1578–1586

    Article  CAS  Google Scholar 

  10. Linic S, Christopher P, Ingram DB (2011) Nat Mater 10(12):911–921

    Article  CAS  PubMed  Google Scholar 

  11. Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Nat Mater 9(3):193–204

    Article  CAS  PubMed  Google Scholar 

  12. Lin S-J, Lee K-C, Wu J-L, Wu J-Y (2012) Sol Energy 86(9):2600–2605

    Article  CAS  Google Scholar 

  13. Dong H, Wu Z, Gao Y, El-Shafei A, Ning S, Xi J, Jiao B, Hou X (2014) Org Electron 15(11):2847–2854

    Article  CAS  Google Scholar 

  14. Guo K, Li M, Fang X, Liu X, Sebo B, Zhu Y, Hu Z, Zhao X (2013) J Power Sources 230:155–160

    Article  CAS  Google Scholar 

  15. Li Y, Wang H, Feng Q, Zhou G, Wang Z-S (2013) Energ Environ Sci 6(7):2156–2165

    Article  CAS  Google Scholar 

  16. Zheng DJ, Pang XC, Wang MY, He YJ, Lin CJ, Lin ZQ (2015) Chem Mater 27(15):5271–5278

    Article  CAS  Google Scholar 

  17. Wang Q, Butburee T, Wu X, Chen H, Liu G, Wang L (2013) J Mater Chem A 1(43):13524–13531

    Article  CAS  Google Scholar 

  18. Gangishetty MK, Scott RW, Kelly TL (2014) Langmuir 30(47):14352–14359

    Article  CAS  PubMed  Google Scholar 

  19. Bai L, Li M, Guo K, Luoshan M, Mehnane HF, Pei L, Pan M, Liao L, Zhao X (2014) J Power Sources 272:1100–1105

    Article  CAS  Google Scholar 

  20. Mayer KM, Hafner JH (2011) Chem Rev 111(6):3828–3857

    Article  CAS  PubMed  Google Scholar 

  21. Brown MD, Suteewong T, Kumar RS, D’Innocenzo V, Petrozza A, Lee MM, Wiesner U, Snaith HJ (2011) Nano Lett 11(2):438–445

    Article  CAS  PubMed  Google Scholar 

  22. Fu NQ, Bao ZY, Zhang Y-L, Zhang GG, Ke SM, Lin P, Dai JY, Huang HT, Lei DY (2017) Nano Energy 41:654–664

    Article  CAS  Google Scholar 

  23. Green MA, Pillai S (2012) Nat Photonics 6(3):130–132

    Article  CAS  Google Scholar 

  24. Jung H, Koo B, Kim JY, Kim T, Son HJ, Kim B, Kim JY, Lee DK, Kim H, Cho J, Ko MJ (2014) ACS Appl Mater Interfaces 6(21):19191–19200

    Article  CAS  PubMed  Google Scholar 

  25. Ng SP, Lu X, Ding N, Wu C-ML, Lee C-S (2014) Sol Energy 99:115–125

    Article  CAS  Google Scholar 

  26. Standridge SD, Schatz GC, Hupp JT (2009) Langmuir 25(5):2596–2600

    Article  CAS  PubMed  Google Scholar 

  27. Gangishetty MK, Lee KE, Scott RWJ, Kelly TL (2013) ACS Appl Mater Interfaces 5(21):11044–11051

    Article  CAS  PubMed  Google Scholar 

  28. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Nano Lett 6(2):215–218

    Article  CAS  PubMed  Google Scholar 

  29. Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng X, Paulose M, Seabold JA, Choi K-S, Grimes CA (2009) J Phys Chem C 113(16):6327–6359

    Article  CAS  Google Scholar 

  30. Fu NQ, Liu Y, Liu YC, Lu W, Zhou LM, Peng F, Huang HT (2015) J Phys Chem A 3(40):20366–20374

    CAS  Google Scholar 

  31. Xu Z, Lin Y, Yin M, Zhang H, Cheng C, Lu L, Xue X, Fan HJ, Chen X, Li D (2015) Adv Mater Interfaces 2(13):1500769–1500776

    Article  CAS  Google Scholar 

  32. Zhang WG, Liu YM, Zhou DY, Wen J, Zheng LW, Liang W, Yang FQ (2016) Rsc Adv 6(54):48580–48588

    Article  CAS  Google Scholar 

  33. Zhao ZF, Zhu XX, Zuo M, Xu J, Wang Y (2016) Crystengcomm 18(9):1636–1644

    Article  CAS  Google Scholar 

  34. Muduli S, Game O, Dhas V, Vijayamohanan K, Bogle KA, Valanoor N, Ogale SB (2012) Sol Energy 86(5):1428–1434

    Article  CAS  Google Scholar 

  35. Zhang X, Liu Y, Lee S-T, Yang S, Kang Z (2014) Energ Environ Sci 7(4):1409–1419

    Article  CAS  Google Scholar 

  36. Chen ZY, Fang L, Dong W, Zheng FG, Shen MR, Wang JL (2014) J Mater Chem A 2(3):824–832

    Article  CAS  Google Scholar 

  37. Wang GM, Wang HY, Ling YC, Tang YC, Yang XY, Fitzmorris RC, Wang CC, Zhang JZ, Li Y (2011) Nano Lett 11(7):3026–3033

    Article  CAS  PubMed  Google Scholar 

  38. Yang X, Wu LP, Du L, Li XJ (2015) Catal Lett 145(9):1771–1777

    Article  CAS  Google Scholar 

  39. Chen X, Liu L, Yu PY, Mao SS (2011) Science 331(6018):746–750

    Article  CAS  PubMed  Google Scholar 

  40. Zheng YZ, Xu YY, Fang HB, Wang Y, Tao X (2015) Rsc Adv 5(126):103790–103796

    Article  CAS  Google Scholar 

  41. Kruse N, Chenakin S (2011) Appl Catal A 391(1–2):367–376

    Article  CAS  Google Scholar 

  42. Zwijnenburg A, Goossens A, Sloof WG, Craje MWJ, van der Kraan AM, de Jongh LJ, Makkee M, Moulijn JA (2002) J Phys Chem B 106(38):9853–9862

    Article  CAS  Google Scholar 

  43. Wang MY, Ye MD, Iocozzia J, Lin CJ, Lin ZQ (2016) Adv Sci 3(6):1600024–1600037

    Article  CAS  Google Scholar 

  44. Dong H, Wu Z, Lu F, Gao Y, El-Shafei A, Jiao B, Ning S, Hou X (2014) Nano Energy 10:181–191

    Article  CAS  Google Scholar 

  45. Hu XP, Blackwood DJ (2006) J Electroceram 16(4):593–598

    Article  CAS  Google Scholar 

  46. Mihi A, Míguez HJ (2005) Phys Chem B 109(33):15968–15976

    Article  CAS  Google Scholar 

  47. Tao C-a, Zhu W, An Q, Li GJ (2010) Phys Chem C 114(23):10641–10647

    Article  CAS  Google Scholar 

  48. Zhang Z, Zhang L, Hedhili MN, Zhang H, Wang P (2013) Nano Lett 13(1):14–20

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of this work by the National Natural Science Foundation of China (51502243), the Natural Science Foundation of Shannxi Province (2017JM5078), and the Fundamental Research Funds for the Central Universities (3102018zy006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Guo or Jun Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4519 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Guo, M., Su, H. et al. Improving the efficiency of dye-sensitized solar cell via tuning the Au plasmons inlaid TiO2 nanotube array photoanode. J Appl Electrochem 48, 1139–1149 (2018). https://doi.org/10.1007/s10800-018-1220-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-018-1220-4

Keywords

Navigation