Skip to main content
Log in

A novel electrochemical DNA-sensing nanoplatform based on supramolecular ionic liquids grafted on nitrogen-doped graphene aerogels

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the application of supramolecular ionic liquids grafted on nitrogen-doped graphene aerogels (SIL-g-(N)GAs), a novel electrode system, for the preparation of electrochemical DNA sensing platform is proposed. The super dispersion of SIL-g-(N)GAs in water makes it an ideal candidate for biological purposes such as gene delivery. In fact, SIL-g-(N)GAs/glassy carbon working electrode (GCE) can realize the simultaneous detection of all four DNA bases in double-stranded DNA without a prehydrolysis step. On the SIL-g-(N)GAs/GCE, due to the presence of SIL on the surface of three-dimensional nitrogen-doped graphene, the anchoring of the DNA probe can be achieved by electrostatic association of SIL cations with the DNA backbone readily. So, herein we report a novel strategy for DNA hybridization without any electroactive tags or intercalators and suggest the potential applications of SIL-g-(N)GAs/GCE in the label-free electrochemical detection of DNA hybridization or DNA damage for further research. Moreover, the influence of potentially interfering substances on the determination of DNA is investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Drummond TG, Hill MG, Barton JK (2003) Electrochemical DNA sensors. Nat Biotechnol 21(10):1192–1199

    Article  CAS  Google Scholar 

  2. Park S-J, Taton TA, Mirkin CA (2002) Array-based electrical detection of DNA with nanoparticle probes. Science 295(5559):1503–1506

    CAS  Google Scholar 

  3. Paleček E, Bartošík M (2012) Electrochemistry of nucleic acids. Chem Rev 112(6):3427–3481

    Article  Google Scholar 

  4. Song S, Qin Y, He Y, Huang Q, Fan C, Chen H-Y (2010) Functional nanoprobes for ultrasensitive detection of biomolecules. Chem Soc Rev 39(11):4234–4243

    Article  CAS  Google Scholar 

  5. Li D, Song S, Fan C (2010) Target-responsive structural switching for nucleic acid-based sensors. Acc Chem Res 43(5):631–641

    Article  Google Scholar 

  6. Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  CAS  Google Scholar 

  7. Guo Y, Deng L, Li J, Guo S, Wang E, Dong S (2011) Hemin–graphene hybrid nanosheets with intrinsic peroxidase-like activity for label-free colorimetric detection of single-nucleotide polymorphism. ACS Nano 5(2):1282–1290

    Article  CAS  Google Scholar 

  8. Palecek E (1960) Oscillographic polarography of highly polymerized deoxyribonucleic acid. Nature 188:656–657

    Article  CAS  Google Scholar 

  9. Batchelor-McAuley C, Wildgoose GG, Compton RG (2009) The physicochemical aspects of DNA sensing using electrochemical methods. Biosens Bioelectron 24(11):3183–3190

    Article  CAS  Google Scholar 

  10. Lim CX, Hoh HY, Ang PK, Loh KP (2010) Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal Chem 82(17):7387–7393

    Article  CAS  Google Scholar 

  11. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81(14):5603–5613

    Article  CAS  Google Scholar 

  12. Dubuisson E, Yang Z, Loh KP (2011) Optimizing label-free DNA electrical detection on graphene platform. Anal Chem 83(7):2452–2460

    Article  CAS  Google Scholar 

  13. Akhavan O, Ghaderi E, Rahighi R (2012) Toward single-DNA electrochemical biosensing by graphene nanowalls. ACS Nano 6(4):2904–2916

    Article  CAS  Google Scholar 

  14. Kato D, Sekioka N, Ueda A, Kurita R, Hirono S, Suzuki K, Niwa O (2008) Nanohybrid carbon film for electrochemical detection of SNPs without hybridization or labeling. Angew Chem Int Ed 47(35):6681–6684

    Article  CAS  Google Scholar 

  15. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112(11):6027–6053

    Article  CAS  Google Scholar 

  16. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214

    Article  CAS  Google Scholar 

  17. Wu Z-S, Sun Y, Tan Y-Z, Yang S, Feng X, Müllen K (2012) Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J Am Chem Soc 134(48):19532–19535

    Article  CAS  Google Scholar 

  18. Worsley MA, Pauzauskie PJ, Olson TY, Biener J, Satcher JH, Baumann TF (2010) Synthesis of graphene aerogel with high electrical conductivity. J Am Chem Soc 132(40):14067–14069

    Article  CAS  Google Scholar 

  19. Xu Y, Wu Q, Sun Y, Bai H, Shi G (2010) Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 4(12):7358–7362

    Article  CAS  Google Scholar 

  20. Chen Z, Ren W, Gao L, Liu B, Pei S, Cheng H-M (2011) Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat Mater 10(6):424–428

    Article  CAS  Google Scholar 

  21. Wu ZS, Winter A, Chen L, Sun Y, Turchanin A, Feng X, Müllen K (2012) Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv Mater 24(37):5130–5135

    Article  CAS  Google Scholar 

  22. Wei D, Liu Y, Wang Y et al (2009) Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett 9:1752–1758

    Article  CAS  Google Scholar 

  23. Wang X, Li X, Zhang L et al (2009) N-doping of graphene through electrothermal reactions with ammonia. Science 324:768–771

    Article  CAS  Google Scholar 

  24. Lotya M, King PJ, Khan U, De S, Coleman JN (2010) High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4(6):3155–3162

    Article  CAS  Google Scholar 

  25. Patil AJ, Vickery JL, Scott TB, Mann S (2009) Aqueous stabilization and self-assembly of graphene sheets into layered bio-nanocomposites using DNA. Adv Mater 21(31):3159–3164

    Article  CAS  Google Scholar 

  26. Shih C-J, Lin S, Strano MS, Blankschtein D (2010) Understanding the stabilization of liquid-phase-exfoliated graphene in polar solvents: molecular dynamics simulations and kinetic theory of colloid aggregation. J Am Chem Soc 132(41):14638–14648

    Article  CAS  Google Scholar 

  27. Lonkar SP, Bobenrieth A, De Winter J, Gerbaux P, Raquez J-M, Dubois P (2012) A supramolecular approach toward organo-dispersible graphene and its straightforward polymer nanocomposites. J Mater Chem 22(35):18124–18126

    Article  CAS  Google Scholar 

  28. Ji Q, Honma I, Paek S-M, Akada M, Hill JP, Vinu A, Ariga K (2010) Layer-by-layer films of graphene and ionic liquids for highly selective gas sensing. Angew Chem Int Ed 49(50):9737–9739

    Article  CAS  Google Scholar 

  29. Ul Hasan K, Sandberg MO, Nur O, Willander M (2011) Polycation stabilization of graphene suspensions. Nano Res Lett 6(1):1–6

    Google Scholar 

  30. Zhou X, Wu T, Ding K, Hu B, Hou M, Han B (2010) Dispersion of graphene sheets in ionic liquid [bmim][PF6] stabilized by an ionic liquid polymer. Chem Commun 46(3):386–388

    Article  CAS  Google Scholar 

  31. Texter J, Qiu Z, Crombez R, Byrom J, Shen W (2011) Nanofluid acrylate composite resins-initial preparation and characterization. Polym Chem 2(8):1778–1788

    Article  CAS  Google Scholar 

  32. Zeng C, Tang Z, Guo B, Zhang L (2012) Supramolecular ionic liquid based on graphene oxide. Phys Chem Chem Phys 14(28):9838–9845

    Article  CAS  Google Scholar 

  33. Chandran A, Ghoshdastidar D, Senapati S (2012) Groove binding mechanism of ionic liquids: a key factor in long-term stability of DNA in hydrated ionic liquids? J Am Chem Soc 134(50):20330–20339

    Article  CAS  Google Scholar 

  34. Kazerooni H, Nassernejad B (2014) Synthesis of supramolecular ionic liquid grafted three-dimensional nitrogen-doped graphene as a modified cationic polymer. RSC Adv 4:34604–34609

    Article  CAS  Google Scholar 

  35. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  CAS  Google Scholar 

  36. Zhao Y, Hu C, Hu Y, Cheng H, Shi G, Qu L (2012) A versatile, ultralight, nitrogen-doped graphene framework. Angew Chem Int Ed 124(45):11174–11177

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Nasernejad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazerooni, H., Nasernejad, B. A novel electrochemical DNA-sensing nanoplatform based on supramolecular ionic liquids grafted on nitrogen-doped graphene aerogels. J Appl Electrochem 45, 1289–1298 (2015). https://doi.org/10.1007/s10800-015-0891-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0891-3

Keywords

Navigation