Skip to main content
Log in

Structural and electrochemical characterization of Zn–TiO2 and Zn–WO3 nanocomposite coatings electrodeposited on St 37 steel

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this study, TiO2 and WO3 nano-sized particles were chosen as metal oxides to generate anticorrosive Zn composite coatings. The effects of type and amount of oxide particles on the microstructure and corrosion behavior of composite coatings on St 37 steel were investigated. In the first stage of study, electrochemical measurements were carried out in 3.5 % NaCl solution to determine the corrosion behavior of uncoated, Zn-coated, Zn–TiO2, and Zn–WO3 nanocomposite-coated steel samples. In the second stage, the time-dependent surface degradations of all samples immersed into NaCl solution were characterized using scanning electron microscope to observe the protective effect of nanoparticles. It was found that WO3 oxide-dispersed composite coating exhibited superior corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Callister WD, Rethwisch DG (2001) Fundamentals of materials science and engineering: an integrated approach. Wiley, New York

    Google Scholar 

  2. Handbook ASM (2004) Metallography and microstructures. ASM International, Almere

    Google Scholar 

  3. Talbot D, Talbot J (1998) Corrosion science and technology. CRS Press, Boca Raton

    Google Scholar 

  4. Revie RW (2011) Uhlig’s corrosion handbook. Wiley, Hoboken

    Book  Google Scholar 

  5. Handbook ASM (1994) Surface engineering. ASM International, Almere

    Google Scholar 

  6. Handbook ASM (2003) Corrosion: fundamentals, testing, and protection. ASM International, Almere

    Google Scholar 

  7. Ashby MF, Jones DRH (1996) Engineering materials. Butterworth Heinemann, Oxford

    Google Scholar 

  8. Handbook ASM (2001) Composites. ASM International, Almere

    Google Scholar 

  9. Vaezi MR, Sadrnezhaad SK, Nikzad L (2008) Electrodeposition of Ni-SiC nanocomposite coatings and evaluation of wear and corrosion resistance and electroplating characteristics. Colloids Surf A 315:176–182. doi:10.1016/j.colsurfa.2007.07.027

    Article  CAS  Google Scholar 

  10. Sancakoglu O, Culha O, Toparli M, Agaday B, Çelik E (2011) Co-deposited Zn-submicron sized Al2O3 composite coatings: production, characterization and micromechanical properties. Mater Des 32:4054–4061. doi:10.1016/j.matdes.2011.03.027

    Article  CAS  Google Scholar 

  11. Chen W, Wang L, Gao W (2012) Synthesis of Zn-Bi nanocomposite coatings by an ionic co-discharge process. Chem Eng J 192:242–245. doi:10.1016/j.cej.2012.04.001

    Article  CAS  Google Scholar 

  12. Llewellyn DT, Hudd RC (1998) Steels metallurgy and applications. Butterworth Heinemann, Oxford

    Google Scholar 

  13. Saji VS, Thomas J (2007) Nanomaterials for corrosion control. Curr Sci 92:51–55

    CAS  Google Scholar 

  14. Shi L, Sun C, Gao P, Zhou F, Liu W (2006) Mechanical properties and wear and corrosion resistance of electrodeposited Ni-Co/SiC nanocomposite coating. Appl Surf Sci 252:3591–3599. doi:10.1016/j.apsusc.2005.05.035

    Article  CAS  Google Scholar 

  15. Ranganatha S, Venkatesha TV, Vathsala K (2010) Development of electroless Ni-Zn-P/nano-TiO2 composite coatings and their properties. Appl Surf Sci 256:7377–7383. doi:10.1016/j.apsusc.2010.05.076

    Article  CAS  Google Scholar 

  16. Pouladi S, Shariat MH, Bahrololoom ME (2012) Electrodeposition and characterization of Ni-Zn-P and Ni-Zn-P/nano SiC coatings. Surf Coat Technol 213:33–40. doi:10.1016/j.surfcoat.2012.10.011

    Article  CAS  Google Scholar 

  17. Shibli SMA, Chacko F (2011) Development of nano TiO2-incorporated phosphate coatings on hot dip zinc surface for good paintability and corrosion resistance. Appl Surf Sci 257:3111–3117. doi:10.1016/j.apsusc.2010.10.125

    Article  CAS  Google Scholar 

  18. Ranganatha S, Venkatesha TV, Vathsala K, Kumar MKP (2012) Electrochemical studies on Zn/nano CeO2 electrodeposited composite coatings. Surf Coat Technol 208:64–72. doi:10.1016/j.surfcoat.2012.08.004

    Article  CAS  Google Scholar 

  19. Shibli SMA, Chacko F (2008) Development of nano CeO2-incorporated high performance hot-dip zinc coating. Surf Coat Technol 202:4971–4975. doi:10.1016/j.surfcoat.2008.04.090

    Article  CAS  Google Scholar 

  20. Praveen BM, Venkatesha TV, Naik YA, Prashantha K (2007) Corrosion studies of carbon nanotubes-Zn composite coating. Surf Coat Technol 20:5836–5842. doi:10.1016/j.surfcoat.2006.10.034

    Article  Google Scholar 

  21. Praveen BM, Venkatesha TV (2008) Electrodeposition and properties of Zn-nanosized TiO2 composite coatings. Appl Surf Sci 254:2418–2424. doi:10.1016/j.apsusc.2007.09.047

    Article  CAS  Google Scholar 

  22. Vathsala K, Venkatesha TV (2011) Zn-ZrO2 nanocomposite coatings: electrodeposition and evaluation of corrosion resistance. Appl Surf Sci 257:8929–8936. doi:10.1016/j.apsusc.2011.05.067

    Article  CAS  Google Scholar 

  23. Xia X, Zhitomirsky I, McDermid JR (2009) Electrodeposition of zinc and composite zinc-yttria stabilized zirconia coatings. J Mater Process Technol 209:2632–2640. doi:10.1016/j.jmatprotec.2008.06.031

    Article  CAS  Google Scholar 

  24. Vlasa A, Varavara S, Pop A, Bulea C, Muresan LM (2010) Electrodeposited Zn-TiO2 nanocomposite coatings and their corrosion behavior. J Appl Electrochem 40:1519–1527. doi:10.1007/s10800-010-0130-x

    Article  CAS  Google Scholar 

  25. Kumar MKP, Venkatesha TV, Pavithra MK, Shetty AN (2012) A study on corrosion behavior of electrodeposited Zn-Rutile TiO2 composite coatings. Synth React Inorg M 42:1426–1434. doi:10.1080/15533174.2012.682684

    Article  Google Scholar 

  26. Yang X, Li Q, Zhang S, Liu F, Wang S (2010) Microstructure characteristic and excellent corrosion protection of sealed Zn-TiO2 composite coatings for sintered NdFeB magnet. J Alloys Compd 495:189–195. doi:10.1016/j.jallcom.2010.01.117

    Article  CAS  Google Scholar 

  27. Praveen BM, Venkatesha TV, Naik YA (2007) Corrosion behavior of Zn-TiO2 composite coating. Synth React Inorg M 37:461–465. doi:10.1080/15533170701471216

    Article  CAS  Google Scholar 

  28. Gomes A, Almeida I, Frade T, Tavares AC (2010) Zn-TiO2 and ZnNi-TiO2 nanocomposite coatings: corrosion behaviour. Mater Sci Forum 636–637:1079–1083. doi:10.4028/www.scientific.net/MSF.636-637.1079

    Article  Google Scholar 

  29. Baeck SH, Jaramillo T, Stucky GD, McFarland EW (2002) Controlled electrodeposition of nanoparticulate tungsten oxide. Nano Lett 2:831–834. doi:10.1021/nl025587p

    Article  CAS  Google Scholar 

  30. Granqvist CG (2000) Electrochromic tungsten oxide films: review of progress 1993–1998. Sol Energy Mat Sol 60:201–262. doi:10.1016/S0927-0248(99)00088-4

    Article  CAS  Google Scholar 

  31. Kumar CMP, Venkatesha TV, Chandrappa KG (2012) Effect of surfactants on co-deposition of B4C nanoparticles in Zn matrix by electrodeposition and its corrosion behavior. Surf Coat Technol 206:2249–2257. doi:10.1016/j.surfcoat.2011.09.075

    Article  Google Scholar 

  32. Lee HK, Lee HY, Jeon JM (2007) Codeposition of micro- and nano-sized SiC particles in the nickel matrix composite coatings obtained by electroplating. Surf Coat Technol 201:4711–4717. doi:10.1016/j.surfcoat.2006.10.004

    Article  CAS  Google Scholar 

  33. Gomes A, da Silva Pereira MI (2006) Pulsed electrodeposition of Zn in the presence of surfactants. Electrochim Acta 51:1342–1350. doi:10.1016/j.electacta.2005.06.023

    Article  CAS  Google Scholar 

  34. Erler F, Jakob C, Romanus H, Spiess L, Wielage B, Lampke T, Steinhauser S (2003) Interface behaviour in nickel composite coatings with nano-particles of oxidic ceramic. Electrochim Acta 48:3063–3070. doi:10.1016/S0013-4686(03)00380-3

    Article  CAS  Google Scholar 

  35. Handbook ASM (1993) Properties and selection: iron steels and high performance alloys. ASM International, Almere

    Google Scholar 

  36. Huyett GL (2004) Engineering handbook. Industrial Press Inc., New York

    Google Scholar 

  37. Nayana KO, Venkatesha TV (2011) Synergistic effects of additives on morphology, texture and discharge mechanism of zinc during electrodeposition. J Electroanal Chem 663:98–107. doi:10.1016/j.jelechem.2011.10.001

    Article  CAS  Google Scholar 

  38. Park H, Szpunar JA (1998) The role of texture and morphology in optimizing the corrosion resistance of zinc-based electrogalvanized coatings. Corros Sci 40:525–545. doi:10.1016/S0010-938X(97)00148-0

    Article  CAS  Google Scholar 

  39. Raeissi K, Saatchi A, Golozar MA (2003) Effect of nucleation mode on morphology and texture of electrodeposited zinc. J Appl Electrochem 33:635–642. doi:10.1023/A:1024914503902

    Article  CAS  Google Scholar 

  40. Behzadnasab M, Mirabedini SM, Kabiri K, Jamali S (2011) Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corros Sci 53:89–98. doi:10.1016/j.corsci.2010.09.026

    Article  CAS  Google Scholar 

  41. de la Fuente D, Castaňo JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49:1420–1436. doi:10.1016/j.corsci.2006.08.003

    Article  Google Scholar 

  42. Xia F, Liu C, Ma C, Chu D, Miao L (2012) Preparation and corrosion behavior of electrodeposited Ni–TiN composite coatings. Int J Refract Met H 35:295–299. doi:10.1016/j.ijrmhm.2012.07.002

    Article  CAS  Google Scholar 

  43. Zhou X, Shen Y (2013) Beneficial effects of CeO2 addition on microstructure and corrosion behavior of electrodeposited Ni nanocrystalline coatings. Surf Coat Technol 235:433–446. doi:10.1016/j.surfcoat.2013.07.070

    Article  CAS  Google Scholar 

  44. Tamura H (2008) The role of rusts in corrosion and corrosion protection of iron and steel. Corros Sci 50:1872–1883. doi:10.1016/j.corsci.2008.03.008

    Article  CAS  Google Scholar 

  45. Zhang XG (1996) Corrosion and electrochemistry of zinc. Springer, New York

    Book  Google Scholar 

  46. Aal AA, Barakat MA, Mohamed RM (2008) Electrophoreted Zn-TiO2-ZnO nanocomposite coating films for photocatalytic degradation of 2-chlorophenol. Appl Surf Sci 254:4577–4583. doi:10.1016/j.apsusc.2008.01.049

    Article  Google Scholar 

  47. Baghery P, Farzam M, Mouavi AB, Hosseini M (2010) Ni-TiO2 nanocomposite coating with high resistance to corrosion and wear. Surf Coat Technol 204:3804–3810. doi:10.1016/j.surfcoat.2010.04.061

    Article  CAS  Google Scholar 

  48. Boshkov N, Tsvetkova N, Petrov P, Koleva D, Avdeev G, Tsvetanov C, Raichevsky G, Raicheff R (2008) Corrosion behavior and protective ability of Zn and Zn-Co electrodeposits with embedded polymeric nanoparticles. Appl Surf Sci 254:5618–5625. doi:10.1016/j.apsusc.2008.03.013

    Article  CAS  Google Scholar 

  49. Kumar MK, Venkatesha TV (2013) Fabrication of zinc-nano TiO2 composite films: electrochemical corrosion studies. J Chem Pharm Res 5:253–261. doi: JCPRC5 0975-7384

  50. Ohtsuka T, Matsuda M (2003) In situ Raman spectroscopy for corrosion products of zinc in humidified atmosphere in the presence of sodium chloride precipitate. Corros 59:407–413. doi: CORRA 00109312

  51. Koleva DA, Boshkov N, Bachvarov V, Zhan H, de Wit JHW, Van Breugel K (2010) Application of PEO113-b-PS218 nano-aggregates for improved protective characteristics of composite zinc coatings in chloride-containing environment. Surf Coat Technol 204:3760–3772. doi:10.1016/j.surfcoat.2010.04.043

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Kocaeli University - Scientific Research Projects Unit (KOU-BAP, 2013/060) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ş. Hakan Atapek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erten, Ü., Ünal, H.İ., Zor, S. et al. Structural and electrochemical characterization of Zn–TiO2 and Zn–WO3 nanocomposite coatings electrodeposited on St 37 steel. J Appl Electrochem 45, 991–1003 (2015). https://doi.org/10.1007/s10800-015-0865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0865-5

Keywords

Navigation