Skip to main content

Advertisement

Log in

Optimization of electrode characteristics for the Br2/H2 redox flow cell

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The Br2/H2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (−) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (−) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm−2 and a peak power density of 1.4 W cm−2. Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br reversibly adsorbs at the Pt (−) electrode for potentials exceeding a critical value, and the extent of Br coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Cho KT, Albertus P, Battaglia V, Kojic A, Srinivasan V, Weber AZ (2013) Energy Technol 1:596–608

    Article  Google Scholar 

  2. Fischer J, Bingle J (1955) J Am Chem Soc 77:6511–6512

    Article  CAS  Google Scholar 

  3. Cho KT, Tucker MC, Ding M, Ridgway P, Battaglia VS, Srinivasan V, Weber AZ (2014) ChemPlusChem. doi:10.1002/cplu.201402043

  4. Goor-Dar M, Travitsky N, Peled E (2012) J Power Sources 197:111–115

    Article  CAS  Google Scholar 

  5. Livshits V, Ulus A, Peled E (2006) Electrochem Commun 8:1358–1362

    Article  CAS  Google Scholar 

  6. Nguyen TV, Kreutzer H, Yarlagadda V, McFarland E, Singh N (2013) ECS Trans 53(7):75–81

    Article  CAS  Google Scholar 

  7. Zhang L, Shao ZG, Wang X, Yu H, Liu S, Yi B (2013) J Power Sources 242:15–22

    Article  CAS  Google Scholar 

  8. Cho KT, Ridgway P, Weber AZ, Haussener S, Battaglia V, Srinivasan V (2012) J Electrochem Soc 159(11):A1806–A1815

    Article  CAS  Google Scholar 

  9. Yarlagadda V, Nguyen TV (2013) J Electrochem Soc 160(6):F535–F547

    Article  CAS  Google Scholar 

  10. Kreutzer H, Yarlagadda V, Nguyen TV (2012) J Electrochem Soc 159(7):F331–F337

    Article  CAS  Google Scholar 

  11. Park JW, Wycisk R, Pintauro PN (2013) ECS Trans 50(2):1217–1231

    Article  Google Scholar 

  12. Yeo RS, Chin DT (1980) J Electrochem Soc 127(3):549–555

    Article  CAS  Google Scholar 

  13. Kusoglu A, Cho KT, Prato RA, Weber AZ (2013) Solid State Ionics 252:68–74

    Article  CAS  Google Scholar 

  14. Aaron D, Sun CN, Bright M, Papandrew AB, Mench MM, Zawodzinksi TA (2013) ECS Electrochem Lett 2(3):A1–A3

    Article  Google Scholar 

  15. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) J Power Sources 206:450–453

    Article  CAS  Google Scholar 

  16. Bai Y (2013) Membrane and performance study in polymer electrolyte membrane fuel cells and hydrogen bromine redox flow batteries. Dissertation, University of Tennessee, Knoxville

  17. Kreutzer HM (2012) Characterization of the hydrogen-bromine flow battery for electrical energy storage. Dissertation, University of Kansas, Lawrence

  18. Xu J, Scherson D (2013) Anal Chem 85:2795–2801

    Article  CAS  Google Scholar 

  19. Breiter MW (1963) Electrochim Acta 8:925–935

    Article  Google Scholar 

  20. Bagotzky VS, Vassilyev YB, Weber J, Pirtskhalava JN (1970) J Electroanal Chem 27:31–46

    Article  Google Scholar 

  21. Barna GG, Frank SN, Teherani TH, Weedon LD (1984) J Electrochem Soc 131:1973–1980

    Article  CAS  Google Scholar 

  22. Onishi LM, Prausnitz JM, Newman J (2007) Phys Chem B 111:10166–10173

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge helpful discussion with Venkat Srinivasan and Vincent Battaglia. This work was funded by Advanced Research Projects Agency-Energy (ARPA-E) of the U.S. Department of Energy (contract nos. DE-AC02-05CH11231 for LBNL and DE-AR0000262 for TVN Systems, Inc.) with cost share provided by TVN Systems, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Tucker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tucker, M.C., Cho, K.T., Weber, A.Z. et al. Optimization of electrode characteristics for the Br2/H2 redox flow cell. J Appl Electrochem 45, 11–19 (2015). https://doi.org/10.1007/s10800-014-0772-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0772-1

Keywords

Navigation