Skip to main content

Advertisement

Log in

The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The poisoning effect and the role of H3PO4 (PA) at the anodic electrocatalytic layer of a high temperature polymer electrolyte membrane (HT PEM based on ADVENT TPS®) fuel cell are discussed under the light of cyclic voltammetry, CO stripping, and X-ray photoelectron spectroscopy (XPS) experiments. The catalytic layer was based on both the pyridine-modified multi-wall carbon nanotubes, 30 wt% Pt/(ox.MWCNT)–Py, and on commercial 30 wt% Pt/C, with varying PA loadings on the electrode. At low PA loadings (<3 gPA/gPt), the electrochemically active surface area of Pt decreases significantly under H2 anode long-term operation, approaching surface Pt utilization <10 %. This degradation is attributed to the formation of pyrophosphoric or triphosphoric acid as well as catalytically H2 reduced PA species, which block the Pt surface area. As was explicitly detected by means of XPS PA species were displaced from the Pt surface under H2 or CO exposure. The poisoning effect is reversible as these species can be hydrated back to orthophosphoric acid. The reduced species can be reoxidized into PA at 750 mV versus RHE. On the other hand, the electrochemical interface is stable at PA loadings exceeding 3 gPA/gPt, thus approaching Pt surface utilization >80 % in the long term. This is believed to be a consequence of the more uniform distribution of PA, thus eliminating the PA displacement from the Pt interphase. It is hypothesized that the minimization of the PA poisoning effect at PA > 3 gPA/gPt, may also be a result of more efficient hydration of the catalytic layer that is being achieved through the hydration of the PA in the membrane and in the catalyst layer by the cathodically produced water vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Yang C, Costamagna P, Srinivasan S, Benziger J, Bocarsly AB (2001) Approaches and technical challenges to high temperature operation of proton exchange membrane fuel cells. J Power Sources 103(1):1–9. doi:10.1016/S0378-7753(01)00812-6

    Article  CAS  Google Scholar 

  2. Song JM, Suzuki S, Uchida H, Watanabe M (2006) Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells. Langmuir 22(14):6422–6428. doi:10.1021/la060671w

    Article  CAS  Google Scholar 

  3. Xu Z, Qi Z, Kaufman A (2005) Superior catalysts for proton exchange membrane fuel cells. Electrochem Solid State Lett 8(6):A313–A315. doi:10.1149/1.1912018

    Article  CAS  Google Scholar 

  4. Kim H, Lee W, Yoo D (2007) Functionalized carbon support with sulfonated polymer for direct methanol fuel cells. Electrochim Acta 52(7):2620–2624. doi:10.1016/j.electacta.2006.09.017

    Article  CAS  Google Scholar 

  5. Du CY, Zhao TS, Liang ZX (2008) Sulfonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. J Power Sources 176(1):9–15. doi:10.1016/j.jpowsour.2007.10.016

    Article  CAS  Google Scholar 

  6. Orfanidi A, Daletou MK, Neophytides SG (2011) Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Appl Catal B Environ 106:379–389. doi:10.1016/j.apcatb.2011.05.043

    Article  CAS  Google Scholar 

  7. Pefkianakis EK, Deimede V, Daletou MK, Gourdoupi N, Kallitsis JK (2005) Novel polymer electrolyte membrane, based on pyridine containing poly(ether sulfone), for application in high-temperature fuel cells. Macromol Rapid Commun 26:1724–1728. doi:10.1002/marc.200500540

    Article  CAS  Google Scholar 

  8. Daletou MK, Geormezi M, Pefkianakis EK, Morfopoulou C, Kallitsis JK (2010) Fully aromatic copolyethers for high temperature polymer electrolyte membrane fuel cells. Fuel Cells 10(1):35–44. doi:10.1002/fuce.200900032

    CAS  Google Scholar 

  9. Kalamaras I, Daletou MK, Gregoriou VG, Kallitsis JK (2011) Sulfonated aromatic polyethers containing pyridine units as electrolytes for high temperature fuel cells. Fuel Cells 11:921–931. doi:10.1002/fuce.201100024

    Article  CAS  Google Scholar 

  10. Geormezi M, Chochos CL, Gourdoupi N, Neophytides SG, Kallitsis JK (2011) High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells. J Power Sources 196:9382–9390. doi:10.1016/j.jpowsour.2011.06.031

    Article  CAS  Google Scholar 

  11. Kalamaras I, Daletou MK, Neophytides SG, Kallitsis JK (2012) Thermal crosslinking of aromatic polyethers bearing pyridine groups for use as high temperature polymer electrolytes. J Membr Sci 415–416:42–50. doi:10.1016/j.memsci.2012.04.057

    Article  Google Scholar 

  12. Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34(5):449–477. doi:10.1016/j.progpolymsci.2008.12.003

    Article  CAS  Google Scholar 

  13. Daletou MK, Kallitsis JK, Voyiatzis G, Neophytides SG (2009) The interaction of water vapors with H3PO4 imbibed electrolyte based on PBI/polysulfone copolymer blends. J Membr Sci 326:76–83. doi:10.1016/j.memsci.2008.09.040

    Article  CAS  Google Scholar 

  14. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) J Phys Chem B 108:17886–17892. doi:10.1021/jp047349j

    Article  CAS  Google Scholar 

  15. Nart FC, Iwasita T (1992) On the adsorption of H2PO4 and H3PO4 on platinum: an in situ FT-ir study. Electrochim Acta 37(3):385–391. doi:10.1016/0013-4686(92)87026-V

    Article  CAS  Google Scholar 

  16. Habib MA, Bockris JO’M (1985) Adsorption at the solid/solution interface, an FTIR study of phosphoric acid on platinum and gold. J Electrochem Soc 132(1):108–114. doi:10.1149/1.2113736

    Article  CAS  Google Scholar 

  17. Das SK, Reis A, Berry KJ (2009) Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. J Power Sources 193:691–698. doi:10.1016/j.jpowsour.2009.04.021

    Article  CAS  Google Scholar 

  18. Camargo APM, Previdello BAF, Varela H, Gonzalez ER (2010) Effect of temperature on the electro-oxidation of ethanol on platinum. Quim Nova 33:2143–2147. doi:10.1590/S0100-40422010001000026

    Article  CAS  Google Scholar 

  19. Kohlmayr G, Stonehart P (1973) Adsorption kinetics for carbon monoxide on platinum in hot phosphoric acid. J Electrochim Acta 18(2):211–223. doi:10.1016/0013-4686(73)80014-3

    Article  CAS  Google Scholar 

  20. Bagotzky VS, Vassilyev YuB, Weber J, Pirtskhalava JN (1970) Adsorption of anions on smooth platinum electrodes. J Electroanal Chem Interfacial Electrochem 27(1):31–46. doi:10.1016/S0022-0728(70)80200-5

    Article  Google Scholar 

  21. Vidaković T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613. doi:10.1016/j.electacta.2006.12.057

    Article  Google Scholar 

  22. Jiang R, Russell Kunz H, Fenton JM (2006) Influence of temperature and relative humidity on performance and CO tolerance of PEM fuel cells with Nafion®–Teflon®–Zr(HPO4)2 higher temperature composite membranes. Electrochim Acta 51(26):5596–5605. doi:10.1016/j.electacta.2006.02.033

    Article  CAS  Google Scholar 

  23. Buelte SJ, Lewis D, Eisman G (2011) Effects of phosphoric acid concentration on platinum catalyst and phosphoric acid hydrogen pump performance. ECS Trans 41(1):1955–1966. doi:10.1149/1.3635725

    Article  CAS  Google Scholar 

  24. Vogel WM, Baris JM (1978) Changes in the surface of platinum in hot concentrated phosphoric acid at low potentials. J Electrochim Acta 23:463–466. doi:10.1016/0013-4686(78)87047-9

    Article  CAS  Google Scholar 

  25. Sugishima N, Hinatsu JT, Foulkes FR (1994) Phosphorous acid impurities in phosphoric acid fuel cell electrolytes II. Effects on the oxygen reduction reaction at platinum electrodes. J Electrochem Soc 141:3332–3335. doi:10.1149/1.2059335

    Article  CAS  Google Scholar 

  26. Huang JC, Sen RK, Yeager E (1979) Oxygen reduction on platinum in 85 % orthophosphoric acid. J Electrochem Soc 126:786–792. doi:10.1149/1.2129139

    Article  CAS  Google Scholar 

  27. Clouser SJ, Huang JC, Yeager E (1993) Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 23:597–605. doi:10.1007/BF00721951

    Article  CAS  Google Scholar 

  28. Sugishima N, Hinatsu JT, Foulkes FR (1994) Phosphorous acid impurities in phosphoric acid fuel cell electrolytes I. Voltammetric study of impurity formation. J Electrochem Soc 141:3325–3331. doi:10.1149/1.2059334

    Article  CAS  Google Scholar 

  29. Camargo APM, Previdello BAF, Varela H, Gonzalez ER (2010) The impact of water concentration on the catalytic oxidation of ethanol on platinum electrode in concentrated phosphoric acid. Electrochem Commun 12:140–143. doi:10.1016/j.elecom.2009.11.008

    Article  CAS  Google Scholar 

  30. Burke LD, Morrissey JA (1994) Hydrous oxide formation on platinum in phosphoric acid solution. J Electrochem Soc 141:2361–2368. doi:10.1149/1.2055126

    Article  CAS  Google Scholar 

  31. Burke LD, Casey JK (1992) The role of hydrous oxide species on platinum electrocatalysts in the methanol/air fuel cell. Electrochim Acta 37:1817–1829. doi:10.1016/0013-4686(92)85086-Z

    Article  CAS  Google Scholar 

  32. Sleightholme AES, Kucernak A (2011) An anomalous peak observed in the electrochemistry of the platinum/perfluorosulfonic acid membrane interface. Electrochim Acta 56:4396–4402. doi:10.1016/j.electacta.2010.12.036

    Article  CAS  Google Scholar 

  33. Parkinson CR, Walker M, McConville CF (2003) Reaction of atomic oxygen with a Pt(111) surface: chemical and structural determination using XPS, CAICISS and LEED. Surf Sci 545:19–33. doi:10.1016/j.susc.2003.08.029

    Article  CAS  Google Scholar 

  34. Heuberger R, Rossi A, Spencer ND (2006) XPS study of the influence of temperature on ZnDTP tribofilm composition. Tribol Lett 25(3):185–196. doi:10.1007/s11249-006-9166-9

    Article  Google Scholar 

  35. Deng J, Wang J, Xu X, Huang H-H, Xu G-Q (1996) Oxidative dehydrogenation of glycol to glyoxal on a P-modified electrolytic silver catalyst. Catal Lett 36(3–4):207–214

    Article  CAS  Google Scholar 

  36. Zhou JG, Thompson J, Cutler J, Blyth R, Kasrai M, Bancroft GM, Yamaguchi E (2010) Resolving the chemical variation of phosphates in thin ZDDP tribofilms by X-ray photoelectron spectroscopy using synchrotron radiation: evidence for ultraphosphates and organic phosphates. Tribol Lett 39(1):101–107. doi:10.1007/s11249-010-9619-z

    Article  Google Scholar 

  37. Eglin M, Rossi A, Spencer ND (2003) X-ray photoelectron spectroscopy analysis of tribostressed samples in the presence of ZnDTP: a combinatorial approach. Tribol Lett 15(3):199–209. doi:1023-8883/03/1000-0199/0

    Article  CAS  Google Scholar 

  38. Thøgersen A, Syre M, Olaisen BR, Diplas S (2013) Studies of the oxidation states of phosphorus gettered silicon substrates using X-ray photoelectron spectroscopy and transmission electron microscopy. J Appl Phys 113:044307. doi:10.1063/1.4775818

    Article  Google Scholar 

  39. Li H, Wang W, Chen H, Deng J (2001) Surface morphology and electronic state characterization of Ni–P amorphous alloy films. J Non Cryst Solids 281(1–3):31–38. doi:10.1016/S0022-3093(00)00430-0

    Article  CAS  Google Scholar 

  40. Zeng Y, Zhou S (1999) In situ UV–Vis spectroscopic study of the electrocatalytic oxidation of hypophosphite on a nickel electrode. Electrochem Commun 1(6):217–222. doi:10.1016/S1388-2481(99)00043-0

    Article  CAS  Google Scholar 

  41. Daletou MK, Kallitsis JK, Neophytides SG (2011) Materials, proton conductivity and electrocatalysis in high temperature PEM fuel cells. In: Vayenas SC (ed) Interfacial phenomena in electrochemistry, modern aspects of electrochemistry, vol 51. Springer, New York, pp 301–368. doi:10.1007/978-1-4419-5580-7_6

    Google Scholar 

Download references

Acknowledgments

Financial support of this work from the European Commission through the program “Understanding the Degradation Mechanisms of Membrane-Electrode-Assembly for High Temperature PEMFCs and Optimization of the Individual Components,” DEMMEA FCH-JU 245156 (2010–2012) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stylianos G. Neophytides.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cyclic voltammograms, first cycle, at 140 °C after fuel cell operation at 180 °C for 24 h at 0.2 A/cm2 under pure H2/O2 flows (λH2 = 1.2, λO2 = 2) for MEA 13 (2 gPA/gPt) and MEA 15 (6 gPA/gPt) (TIFF 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orfanidi, A., Daletou, M.K., Sygellou, L. et al. The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43, 1101–1116 (2013). https://doi.org/10.1007/s10800-013-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0626-2

Keywords

Navigation