Skip to main content
Log in

Effect of additive and current mode on surface morphology of palladium films from a non-aqueous deep eutectic solution (DES)

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Electrodeposition of palladium from a non-aqueous electrolyte solution [choline chloride/urea/palladium(II)chloride] has been carried out by direct and pulse current electroplating. In this study, the influence of an organic additive (nicotinic acid amide), current mode (direct current or pulse current deposition) and hydrodynamic on the surface morphology of electroplated palladium films was investigated. In order to determine the surface morphology and thickness of the electrodeposited palladium layers, a scanning electron microscope and an energy dispersive X-ray fluorescence spectroscope were used. In addition, the cell voltage during the different electrodeposition experiments was recorded and analysed. The experimental results showed that the surface morphology of the palladium deposits could be remarkably affected either by addition of the additive or by applying pulse current. Pulse plating and the selected inhibitor mutually interfere with each other, causing changes in the microstructure of the palladium deposits (e.g. smoothening or forming of micro-cracks). It was possible to optimise the palladium deposit quality by applying pulse current or by addition of the appropriate inhibitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Schlesinger M, Paunovic M (2000) Modern electroplating. Wiley, New York

    Google Scholar 

  2. DGO Fachausschuss Edelmetalle (1993) Galvanotechnik (Sonderdruck) 84:2

  3. Su FY, Huang JF, Sun IW (2004) Galvanostatic deposition of palladium-gold alloys in a lewis basic EMI-Cl-BF4 ionic liquid. J Electrochem Soc 151:C811

    Article  CAS  Google Scholar 

  4. Jou LH, Chang JK, Whang TJ, Sun IW (2010) Electrodeposition of palladium-tin alloys from 1-ethyl-3-methylimidazolium chloride-tetrafluoroborate ionic liquid for ethanol electro-oxidation. J Electrochem Soc 157:D443

    Article  CAS  Google Scholar 

  5. Abbott AP, Capper G, Davies DL, Rasheed RK, Tampyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70

    Article  Google Scholar 

  6. Bakkar A, Neubert V (2007) Electrodeposition onto magnesium in air and water stable ionic liquids: from corrosion to successful plating. Electrochem Commun 9:2428

    Article  CAS  Google Scholar 

  7. Abbott AP, Capper G, Davies DL, Rasheed RK, Archer J, John C (2004) Electrodeposition of chromium black from ionic liquids. Trans IMF 82:14

    CAS  Google Scholar 

  8. Abbott AP, El Ttaib K, Ryder KS, Smith EL (2008) Electrodeposition of nickel using eutectic based ionic liquids. Trans IMF 86:234

    Article  CAS  Google Scholar 

  9. Cojocaru P, Magagnin L, Gómez E, Valles E (2011) Using deep eutectic solvents to electrodeposit CoSm films ans nanowires. Mater Lett 65:3597

    Article  CAS  Google Scholar 

  10. Böck R, Wulf SE (2009) Electrodeposition of iron films from an ionic liquid (ChCl/urea/FeCl3 deep eutectic mixtures). Trans IMF 87:28

    Article  Google Scholar 

  11. Whitehead AH, Pölzler M, Gollas B (2010) Zinc electrodeposition from a deep eutectic system containing choline chloride and ethylene glycol. J Electrochem Soc 157:D328

    Article  CAS  Google Scholar 

  12. Böck R, Wulf SE (2009) Elektrochemische Metallabscheidung aus tief eutektisch schmelzenden Lösungen (Raumtemperatursalzschmelzen). In: Suchentrunk R (ed) Jahrbuch der Oberflächentechnik, vol 65. Leuze, Bad Saulgau, pp 23–36

    Google Scholar 

  13. Gómez E, Cojocaru P, Magagnin L, Valles E (2011) Electrodeposition of Co, Sm and SmCo from a deep eutectic solvent. J Electroanal Chem 658:18

    Article  Google Scholar 

  14. Lanzinger G, Böck R, Freudenberger R, Mehner T, Scharf I, Lampke T (2013) Electrodeposition of palladium films from ionic liquid (IL) and deep eutectic solutions (DES): physical-chemical characterisation of non-aqueous electrolytes and surface morphology of palladium deposits. Trans IMF 91:133

    Article  CAS  Google Scholar 

  15. Ibl N (1980) Some theoretical aspects of pulse electrolysis. Surf Technol 10:81

    Article  CAS  Google Scholar 

  16. Puippe JC, Leaman FH (1986) Theory and practise of pulse plating. AESF Society, Orlando

    Google Scholar 

  17. Imaz N, García-Lecina E, Suárez C, Díez JA, Rodríguez J, Molina J, García-Navas V (2009) Influence of additives and plating parameters on morphology and mechanical properties of copper coatings obtained by pulse electrodepsotion. Trans IMF 87:64

    Article  CAS  Google Scholar 

  18. Mohan S, Ravindran V, Subramanian B, Saravanan G (2009) Electrodeposition of zinc-nickel alloy by pulse plating using non-cyanide bath. Trans IMF 87:85

    Article  CAS  Google Scholar 

  19. Böck R (2008) Stand der Aluminiumabscheidung aus halo-aluminathaltigen ionischen Flüssigkeiten. In: Suchentrunk R (ed) Jahrbuch der Oberflächentechnik, vol 64. Leuze, Bad Saulgau, pp 21–33

    Google Scholar 

  20. Tang J, Azumi K (2011) Optimization of pulsed electrodeposition of aluminium from AlCl3-1-ethyl-3-methylimidazolium chloride ionic liquid. Electrochim Acta 56:1130

    Article  CAS  Google Scholar 

  21. Li B, Fan C, Chen Y, Lou J, Yan L (2011) Pulse current deposition of Al from an AlCl3-EMIC ionic liquid. Electrochim Acta 56:5478

    Article  CAS  Google Scholar 

  22. Ispas A, Bund A (2012) Pulse plating of tantalum from 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl)amide ionic liquids. Trans IMF 90:298

    Article  CAS  Google Scholar 

  23. Hedrich HD, Raub ChJ (1979) Der Einfluss von Inhibitoren auf die Palladiumabscheidung im Palladiumtetramminchloridelektrolyten. Metalloberfläche 33:308

    CAS  Google Scholar 

  24. Hedrich HD, Raub ChJ (1977) Untersuchungen zur galvanischen Palladiumabscheidung. Metalloberfläche 31:512

    CAS  Google Scholar 

  25. Raub ChJ (1974) Probleme der Inhibitoren in der Galvanotechnik. Werkst Korros 25:720

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Deutsche Forschungsgemeinschaft (DFG) for financial support (project no. ZI 596/4-1 and LA 1274/20-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reinhard Böck or Thomas Mehner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böck, R., Lanzinger, G., Freudenberger, R. et al. Effect of additive and current mode on surface morphology of palladium films from a non-aqueous deep eutectic solution (DES). J Appl Electrochem 43, 1207–1216 (2013). https://doi.org/10.1007/s10800-013-0608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0608-4

Keywords

Navigation