Skip to main content

Advertisement

Log in

Hierarchical porous NiCo2O4 nanomaterials with excellent cycling behavior for electrochemical capacitors via a hard-templating route

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Hierarchical porous nickel cobaltite (NiCo2O4) nanomaterials were synthesized via a hard-templating route. The obtained materials consist of nanostructured cubic NiCo2O4 spinels and a spot of cubic NiO nanoparticles, and the materials display a typical hierarchical porous structure. The NiCo2O4 electrode displays quasireversible dynamics characteristics, mainly Faradaic capacitance behavior and capacitance relaxation feature. The NiCo2O4 electrode exhibits an excellent long cycling behavior with no capacitance decays during 5,000 cycles at a current density of 2 A g−1 in 1 M KOH electrolytes, and the NiCo2O4 electrode exhibits both high power and energy performances even after 5,000 cycles with respective value of 1,758 W kg−1 and 8.3 W h kg−1 in 1 M KOH electrolytes, indicating that the NiCo2O4 nanomaterials are promising candidates for electrochemical capacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Aricò AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366

    Article  Google Scholar 

  2. Liu C, Li F, Ma LP, Cheng HM (2010) Adv Mater 22:E28

    Article  CAS  Google Scholar 

  3. Simon P, Gogotsi Y (2008) Nat Mater 7:845

    Article  CAS  Google Scholar 

  4. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, Mc Candless BE, Birkmire RW, Chen JG (2010) Angew Chem 122:10055

    Article  Google Scholar 

  5. Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, Mc Candless BE, Birkmire RW, Chen JG (2010) Angew Chem Int Ed 49:9859

    Article  CAS  Google Scholar 

  6. Burke A (2000) J Power Sources 91:37

    Article  CAS  Google Scholar 

  7. Zheng JP, Cygon PJ, Jow TR (1995) J Electrochem Soc 142:2699

    Article  CAS  Google Scholar 

  8. Zheng YZ, Ding HY, Zhang ML (2008) Thin Solid Films 516:7381

    Article  CAS  Google Scholar 

  9. Chang JK, Lin CT, Tsai WT (2004) Electrochem Commun 6:666

    Article  CAS  Google Scholar 

  10. Subramanian V, Zhu H, Vajtai WR (2005) J Phys Chem B 109:20207

    Article  CAS  Google Scholar 

  11. Kuo C, Mare AA (1996) J Electrochem Soc 143:124

    Article  Google Scholar 

  12. Yuan CZ, Gao B, Su LH, Zhang XG (2008) Solid State Ion 178:1859

    Article  CAS  Google Scholar 

  13. Gao YY, Chen SL, Cao DX (2010) J Power Sources 195:1757

    Article  CAS  Google Scholar 

  14. Xiong SL, Yuan CZ, Zhang XG, Xi BJ, Qian YT (2009) Chem Eur J 15:5320

    Article  CAS  Google Scholar 

  15. Cui B, Lin H, Li JB, Li X, Yang J, Tao J (2008) Adv Funct Mater 18:1440

    Article  CAS  Google Scholar 

  16. Wei TY, Chen CH, Chien HC, Lu SY, Hu CC (2010) Adv Mater 22:347

    Article  CAS  Google Scholar 

  17. Salunkhe RR, Jang K, Yu H, Yu S, Ganesh T, Han SH, Ahn H (2011) J Alloys Compds 509:6677

    Article  CAS  Google Scholar 

  18. Wu YQ, Chen XY, Ji PT, Zhou QQ (2011) Electrochim Acta 56:7517

    Article  CAS  Google Scholar 

  19. Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK (2011) Korean J Chem Eng 28:1464

    Article  CAS  Google Scholar 

  20. Jiang H, Ma J, Li CZ (2012) Chem Commun 48:4465

  21. Wang HW, Hu ZA, Chang YQ, Chen YL, Wu HY, Zhang ZY, Yang YY (2011) J Mater Chem 21:10504

    Article  CAS  Google Scholar 

  22. Wang CH, Zhang X, Zhang DC, Yao C, Ma YW (2012) Electrochim Acta 63:220

    Article  CAS  Google Scholar 

  23. Yuan ZY, Su BL (2006) J Mater Chem 16:663

    Article  CAS  Google Scholar 

  24. Lee J, Kim J, Hyeon T (2006) Adv Mater 18:2073

    Article  CAS  Google Scholar 

  25. Lu AH, Schuth F (2006) Adv Mater 18:1793

    Article  CAS  Google Scholar 

  26. Wang YQ, Yang CM, Schmidt W, Spliethoff B, Bill E, Schuth F (2005) Adv Mater 17:53

    Article  CAS  Google Scholar 

  27. Lai XY, Li XT, Geng WC, Tu JC, Li JX, Qiu SL (2007) Angew Chem Int Ed 46:738

    Article  CAS  Google Scholar 

  28. Wang DW, Li F, Liu M, Lu GQ, Cheng HM (2008) Angew Chem Int Ed 47:373

    Article  CAS  Google Scholar 

  29. Tiemann M (2008) Chem Mater 20:961

    Article  CAS  Google Scholar 

  30. Tian B, Liu X, Solovyov LA, Liu Z, Yang H, Zhang Z, Xie S, Zhang F, Tu B, Yu C, Terasaki O, Zhao D (2004) J Am Chem Soc 126:865

    Article  CAS  Google Scholar 

  31. Wan Y, Yang H, Zhao D (2006) Acc Chem Res 39:423

    Article  CAS  Google Scholar 

  32. Cabo M, Pellicer E, Rossinyol E, Castell O, Suriñach S, Baró MD (2009) Cryst Growth Des 9:4814

    Article  CAS  Google Scholar 

  33. Peshev P, Toshev A, Gyurov G (1989) Mater Res Bull 24:33

    Article  CAS  Google Scholar 

  34. Verma S, Joshi HM, Jagadale T, Chawla A, Chandra R, Ogale S (2008) J Phys Chem C 112:15106

    Article  CAS  Google Scholar 

  35. Kobayashi Y, Ke X, Hata H, Schiffer P, Mallouk TE (2008) Chem Mater 20:2374

    Article  CAS  Google Scholar 

  36. Chi B, Li JB, Han YS (2004) Int J Hydrogen Energy 29:605

    Article  CAS  Google Scholar 

  37. Xing W, Li F, Yan ZF, Lu GQ (2004) J Power Sources 134:324

    Article  CAS  Google Scholar 

  38. Wu MQ, Gao JH, Zhang SR, Chen A (2006) J Porous Mater 13:407

    Article  CAS  Google Scholar 

  39. Zhao DD, Xu MW, Zhou WH, Zhang J, Li HL (2008) Electrochim Acta 53:2699

    Article  CAS  Google Scholar 

  40. Zhou WJ, Zhang J, Xue T, Zhao DD, Li HL (2008) J Mater Chem 18:905

    Article  CAS  Google Scholar 

  41. Xu MW, Bao SJ, Li HL (2007) J Solid State Electrochem 11:372

    Article  CAS  Google Scholar 

  42. Liu Y, Zhao WW, Zhang XG (2008) Electrochim Acta 53:3296

    Article  CAS  Google Scholar 

  43. Lastoskie C, Gubbins KE, Quirkeft N (1993) J Phys Chem 97:4786

    Article  CAS  Google Scholar 

  44. Chang KH, Hu CC, Chou CY (2007) Chem Mater 19:2112

    Article  CAS  Google Scholar 

  45. Hashemi T, Brinkman AW (1992) J Mater Res 7:1278

    Article  CAS  Google Scholar 

  46. Kim JG, Pugmire DL, Battaglia D, Langell MA (2000) Appl Surf Sci 165:70

    Article  CAS  Google Scholar 

  47. Marco JF, Gancedo JR, Gracia M, Gautier JL, Rios E, Berry FJ (2000) J Solid State Chem 153:74

    Article  CAS  Google Scholar 

  48. Thissen A, Ensling D, Fernandez Madrigal FJ, Jaegermann W, Alcantara R, Lavela P, Tirado JL (2005) Chem Mater 17:5202

    Article  CAS  Google Scholar 

  49. Hu CC, Chang KH, Hsu TY (2008) J Electrochem Soc 155:F196

    Article  CAS  Google Scholar 

  50. Wu YT, Hu CC (2004) J Elecrochem Soc 151:A2060

    Article  CAS  Google Scholar 

  51. Du C, Pan N (2006) J Power Sources 160:1487

    Article  CAS  Google Scholar 

  52. Huang CW, Wu YT, Hu CC, Li YY (2007) J Power Sources 172:460

    Article  CAS  Google Scholar 

  53. Srinivasan V, Weidner JW (2000) J Electrochem Soc 147:880

    Article  CAS  Google Scholar 

  54. Yuan CZ, Zhang XG, Su LH, Gao B, Shen LF (2009) J Mater Chem 19:5772

    Article  CAS  Google Scholar 

  55. Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Chem Mater 21:3228

    Article  CAS  Google Scholar 

  56. Choi D, Blomgren GE, Kumta PN (2006) Adv Mater 18:1178

    Article  CAS  Google Scholar 

  57. Justin P, Meher SK, RangaRao G (2010) J Phys Chem C 114:5203

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the financial support of this research by National Basic Research Program of China (2012CB932800, 2011CB935702), Scientific Research Foundation for the Returned Overseas Chinese Scholars and State Education Ministry (SRF for ROCS, SEM) and Hundred Talents Program of Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyu Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, R., Qi, L., Jia, M. et al. Hierarchical porous NiCo2O4 nanomaterials with excellent cycling behavior for electrochemical capacitors via a hard-templating route. J Appl Electrochem 42, 1033–1043 (2012). https://doi.org/10.1007/s10800-012-0494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0494-1

Keywords

Navigation