Skip to main content

Advertisement

Log in

Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources

  • Review Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Technological improvements in polymer electrolyte membrane water electrolysers (PEMWEs) are promoted by their exciting possibilities to operate with renewable power sources. In this paper, a synopsis of the research efforts concerning with the development of electrocatalysts, polymer electrolytes and stack hardware components is presented. The most challenging problem for the development of PEMWEs is the enhancement of oxygen evolution reaction rate. At present, there are no practical alternatives to noble metal-based oxide catalysts such as IrO2 and RuO2. As well as carbon supported Pt nanoparticles are the benchmark cathode catalysts for hydrogen evolution. High noble metal loading on the electrodes and the use of perfluorosulfonic membranes significantly contribute to the cost of these devices. Critical areas include the design of appropriate mixed electrocatalysts and their dispersion on low cost Ti-oxide like supports to increase catalyst utilization. Moreover, the development of alternative membranes with enhanced mechanical properties for high pressure applications, proper conductivity and reduced gas cross-over is strongly required. This latter aspect is also addressed by the development of proper recombination catalysts. The development of anodic mixed non-noble transition metal oxides with spinel or perovskite structure and proper resistance to chemical degradation in the acidic environment and electrochemical corrosion is also an active area of research. Similarly, efforts are also being addressed to Pd and Ru based cathode formulations with cheaper characteristics than Pt. Whereas, concerning with stack hardware, cost reduction may be addressed by replacing Ti-based diffusion media and bipolar plates with appropriate and cost-effective stainless steel materials with enhanced resilience to chemical and electrochemical corrosion. Regarding the combination with renewable power sources, PEM electrolysers can find suitable applications for peak shaving in integrated systems grid connected or in grid independent operating conditions where hydrogen generated through electrolysis is stored and then via fuel cell converted back to electricity when needed or used to refill fuel cell-based cars. Hydrogen is the most promising clean energy carrier to accomplish the sustainable production of energy and a synergy among hydrogen, electricity and renewable energy sources is highly desired.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barbir F (2005) Sol Energy 78:661

    Article  CAS  Google Scholar 

  2. Millet P, Mbemba N, Grigoriev SA, Fateev VN, Aukauloo A, Etiévant C (2011) Int J Hydrogen Energy 36:4134

    Article  CAS  Google Scholar 

  3. Marshall A, Børresen B, Hagen G, Tsypkin M, Tunold R (2007) Energy 32:431

    Article  CAS  Google Scholar 

  4. http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/production.pdf

  5. Cruz JC, Baglio V, Siracusano S, Ornelas R, Ortiz-Frade L, Arriaga LG, Antonucci V, Aricò AS (2011) J Nanopart Res 13:1639

    Article  CAS  Google Scholar 

  6. Siracusano S, Baglio V, Stassi A, Ornelas R, Antonucci V, Aricò AS (2011) Int J Hydrogen Energy 36:7822

    Article  CAS  Google Scholar 

  7. Mamaca N, Mayousse E, Arrii-Clacens S, Napporn TW, Servat K, Guillet N, Kokoh KB (2012) Appl Catal B 111–112:376

    Google Scholar 

  8. Cruz JC, Baglio V, Siracusano S, Antonucci V, Aricò AS, Ornelas R, Ortiz-Frade L, Osorio-Monreal G, Durón-Torres SM, Arriaga LG (2011) Int J Electrochem Sci 6:6607

    CAS  Google Scholar 

  9. Baglio V, Di Blasi A, Denaro T, Antonucci V, Aricò AS, Ornelas R, Matteucci F, Alonso G, Morales L, Orozco G, Arriaga LG (2008) J New Mater Electrochem Syst 11:105

    CAS  Google Scholar 

  10. Kadakia K, Datta MK, Jampani PH, Park SK, Kumta PN (2013) J Power Sources 222:313

    Article  CAS  Google Scholar 

  11. Mazúr P, Polonský J, Paidar M, Bouzek K (2012) Int J Hydrogen Energy 37:12081

    Article  Google Scholar 

  12. Marshall AT, Haverkamp RG (2010) Electrochim Acta 55:1978

    Article  CAS  Google Scholar 

  13. Siracusano S, Baglio V, D’Urso C, Antonucci V, Aricò AS (2009) Electrochim Acta 4:6292

    Article  Google Scholar 

  14. Trasatti S (1991) Electrochim Acta 36:225

    Article  CAS  Google Scholar 

  15. Rossmeisl J, Qu Z-W, Zhu H, Kroes G-J, Nørskov JK (2007) J Electroanal Chem 607:83

    Article  CAS  Google Scholar 

  16. Smith JR, Walsh FC, Clarke RL (1998) J Appl Electrochem 28:1021

    Article  CAS  Google Scholar 

  17. Stoyanova A, Borisov G, Lefterova E, Slavcheva E (2012) Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2012.02.032

    Google Scholar 

  18. Di Blasi A, D’Urso C, Baglio V, Antonucci V, Arico’ AS, Ornelas R, Matteucci F, Orozco G, Beltran D, Meas Y, Arriaga LG (2009) J Appl Electrochem 39:191

    Article  Google Scholar 

  19. Siracusano S, Baglio V, Di Blasi A, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Arico AS (2010) Int J Hydrogen Energy 35:5558

    Article  CAS  Google Scholar 

  20. Cavaliere S, Subianto S, Savich I, Jones DJ, Rozière J (2011) Energy Environ Sci 4:4761

    Article  CAS  Google Scholar 

  21. Cavaliere S, Subianto S, Chevallier L, Jones DJ, Rozière J (2011) Chem Commun 47:6834

    Article  CAS  Google Scholar 

  22. Stassi A, Gatto I, Baglio V, Passalacqua E, Aricò AS (2013) J Power Sources 222:390

    Article  CAS  Google Scholar 

  23. Ghielmi A, Vaccarono P, Troglia C, Arcella V (2005) J Power Sources 145:108

    Article  CAS  Google Scholar 

  24. Ng F, Péron J, Jones DJ, Rozière J (2011) J Polym Sci Part A Polym Chem 49:2107

    Article  CAS  Google Scholar 

  25. Lufrano F, Baglio V, Di Blasi O, Staiti P, Antonucci V, Aricò AS (2012) Solid State Ion 216:90

    Article  CAS  Google Scholar 

  26. Antonucci V, Di Blasi A, Baglio V, Ornelas R, Matteucci F, Ledesma-Garcia J, Arriaga LG, Aricò AS (2008) Electrochim Acta 53:7350

    Article  CAS  Google Scholar 

  27. Siracusano S, Baglio V, Navarra MA, Panero S, Antonucci V, Aricò AS (2012) Int J Electrochem Sci 7:1532

    CAS  Google Scholar 

  28. Baglio V, Ornelas R, Matteucci F, Martina F, Ciccarella G, Zama I, Arriaga LG, Antonucci V, Aricó AS (2009) Fuel Cells 9:247

    Article  CAS  Google Scholar 

  29. Stucki S, Scherer GG, Schlagowski S, Fischer E (1998) J Appl Electrochem 28:1041

    Article  CAS  Google Scholar 

  30. Siracusano S, Baglio V, Briguglio N, Brunaccini G, Di Blasi A, Stassi A, Ornelas R, Trifoni E, Antonucci V, Aricò AS (2012) Int J Hydrogen Energy 37:1939

    Article  CAS  Google Scholar 

  31. Siracusano S, Di Blasi A, Baglio V, Brunaccini G, Briguglio N, Stassi A, Ornelas R, Trifoni E, Antonucci V, Aricò AS (2011) Int J Hydrogen Energy 36:3333

    Article  CAS  Google Scholar 

  32. Grigoriev SA, Kalinnikov AA, Millet P, Porembsky VI, Fateev VN (2010) J Appl Electrochem 40:921

    Article  CAS  Google Scholar 

  33. http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/atex/index_en.htm

  34. Zhang H, Su S, Lin G, Chen J (2012) Int J Electrochem Sci 7:4143

    CAS  Google Scholar 

  35. García-Valverde R, Espinosa N, Urbina A (2012) Int J Hydrogen Energy 37:1927

    Article  Google Scholar 

  36. Troncoso E, Newborough M (2010) Appl Energy 87:1

    Article  CAS  Google Scholar 

  37. Saur G (2008) Technical report, NREL/TP-550-44103.

Download references

Acknowledgments

The authors acknowledge the financial support of the EU through the FCH JU Electrohypem Project. “The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2010-2013) for the Fuel Cells and Hydrogen Joint Technology Initiative under grant agreement Electrohypem n° 300081.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Aricò.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aricò, A.S., Siracusano, S., Briguglio, N. et al. Polymer electrolyte membrane water electrolysis: status of technologies and potential applications in combination with renewable power sources. J Appl Electrochem 43, 107–118 (2013). https://doi.org/10.1007/s10800-012-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0490-5

Keywords

Navigation