Skip to main content

Advertisement

Log in

Corrosion inhibition efficiency study in a microalloyed steel for sour service at 50 °C

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A H2S corrosion inhibition efficiency study by a carboxyamidoimidazoline compound was carried out using electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) techniques. The microalloyed steel assessed was specially designed for sour gas transport and is intended to be applied as line pipe steel in Mexico. The corrosive media was a deaerated 3% NaCl solution, H2S saturated after heated to 50 °C, with several inhibitor concentrations, ranging from 0 to 100 ppm, per test. The EIS and ENA data were analyzed and use as monitoring indicators for the development of a protective film by the inhibitor within 24 h testing. The results indicate that maximum inhibitor efficiency was achieved with only 5 ppm inhibitor concentration, but this efficiency value decreases with increasing of the inhibitor concentration. In addition the results also shows that the maximum efficiency was obtained at an elapsed time of 8 h, and beyond this time the efficiency again decrease. The EN transients prove that regardless the inhibitor concentration, the steel was highly susceptible to localized corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tesseder RS (1981) Oil industry experience with hydrogen embrittlement and stress corrosion cracking. In: Tuttle RN, Kane RD (eds) H2S corrosion in oil and gas production—a compilation of classic papers. NACE, Houston, p 147

    Google Scholar 

  2. Kermani MB, Morshed A (2003) Corrosion 59:659

    Article  CAS  Google Scholar 

  3. Videm K, Kvarekval J (1995) Corrosion 51:260

    Article  CAS  Google Scholar 

  4. Hong T, Sun YH, Jepson WP (2002) Corros Sci 44:101

    Article  CAS  Google Scholar 

  5. Sastri VS (1998) Corrosion inhibitors: principles and applications. Willey, New York

    Google Scholar 

  6. Ashassi-Sorkhabi H, Nabavi-Amri SA (2002) Electrochim Acta 47:2239

    Article  CAS  Google Scholar 

  7. Chetouani A, Aouniti A, Hammouti B, Benchat N, Benhadda T, Kertit S (2003) Corros Sci 45:1675

    Article  CAS  Google Scholar 

  8. Singh I (1993) Corrosion 49:473

    Article  CAS  Google Scholar 

  9. Ateya BG, EI-Anadouli BE, EI-Nizamy FM (1984) Corros Sci 24:497

    Article  CAS  Google Scholar 

  10. Huang H-H, Lee J-T, Tsai W-T (1999) Mat Chem Phys 58:177

    Article  CAS  Google Scholar 

  11. Ren C, Liu D, Bai Z, Li T (2005) Mat Chem Phys 93:305

    Article  CAS  Google Scholar 

  12. Veloz MA, Gonzalez I (2002) Electrochim Acta 48:135

    Article  CAS  Google Scholar 

  13. Garcia LACJ, Jois CBJM, Cardoso EM, Mattos DR (2001) Electrochim Acta 46:3879

    Article  CAS  Google Scholar 

  14. Cabrera-Sierra R, Sosa E, Pech-Canul MA, Gonzalez I (2006) Electrochim Acta 51:1534

    Article  CAS  Google Scholar 

  15. Galicia P, Gonzalez I (2005) Electrochim Acta 50:4451

    Article  CAS  Google Scholar 

  16. Durnie W, De Marco R, Jefferson A, Kinsella BJ (1999) Electrochem. Soc 146:1751

    Article  CAS  Google Scholar 

  17. Ramachandran S, Jovancicevic V (1999) Corrosion 55:259

    Article  CAS  Google Scholar 

  18. Arzola S, Mendoza-Florez J, Duran-Romero R, Genesca J (2006) Corrosion 62:433

    Article  CAS  Google Scholar 

  19. Jovancicevic V, Ramachandran S, Prince P (1999) Corrosion 55:449

    Article  CAS  Google Scholar 

  20. Cruz J, Martinez R, Genesca J, Garcia-Ochoa EJ (2004) Electroanal Chem 566:111

    Article  CAS  Google Scholar 

  21. Rodriguez-Valdez LM, Martinez-Villafañe A, Golztman-Mitnik D (2004) Theochem 681:83

    Article  CAS  Google Scholar 

  22. Xue-Yuan Z, Feng-Ping W, Yu-Fang H, Yuan-Long D (2001) Corros Sci 43:1417

    Article  Google Scholar 

  23. Olivares I, Alanis M, Mendoza R, Campillo B, Juarez-Islas JA (2008) Ironmak Steelmak 6:453

    Google Scholar 

  24. Gerus BRD (1981) H2S Corrosion in oil and gas production—a compilation of classic papers. NACE, Houston, p 888

    Google Scholar 

  25. Walter GW (1989) Corros Sci 26:681

    Article  Google Scholar 

  26. Smith JS, Miller JDA (1975) Br Corros J 10:136

    CAS  Google Scholar 

  27. Gusmano G, Labella P, Montesperelli G, Privitera A, Tassinari S (2006) Corrosion 62:576

    Article  CAS  Google Scholar 

  28. Rozenfel’d IL, Bogomolov DB, Gorodetskii AE, Kazanskii LP, Frolova LV, Shamova LI (1982) Protect Metals 18:121

    Google Scholar 

  29. French EC, Martin RL, Dougherty JA (1989) Mater Perform 28:46

    CAS  Google Scholar 

  30. Meyer FH, Riggs OL, McGlasson RL, Sudbury JD (1958) Corrosion 14:69

    Google Scholar 

  31. El-Awady AA, Abd-El-Nabey BA, Aziz SG (1992) J Electrochem Soc 139:2149

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of Consejo Nacional de Ciencia y Tecnologia through “Programa de apoyo complementario para la consolidación institucional de grupos de investigacion” (Convocatoria 2006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Torres-Islas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torres-Islas, A., Serna, S., Uruchurtu, J. et al. Corrosion inhibition efficiency study in a microalloyed steel for sour service at 50 °C. J Appl Electrochem 40, 1483–1491 (2010). https://doi.org/10.1007/s10800-010-0127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-010-0127-5

Keywords

Navigation