Skip to main content
Log in

New oxygen evolution anodes for metal electrowinning: MnO2 composite electrodes

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Several modifications of manganese dioxide (MnO2) were investigated for use in composite electrode materials for oxygen evolution, the target application being anodes for the industrial electrowinning of metals. It is demonstrated that the performance of this material depends strongly on the modifications of MnO2. All modifications investigated were found to be more active than the usual anode of lead alloyed with silver (PbAg) used in zinc electrowinning. A composite sample containing chemical manganese dioxide (CMD) was found to give an oxygen evolution overpotential 0.25 V lower than the standard PbAg anode material. In the second part of the article, we investigate the effect of varying several parameters of the composite electrode assembly, including the size of the catalyst particles and percentage of the catalyst material used. A model is proposed where the performance of the material is proportional to the total length of the boundaries between the lead matrix material and the MnO2 catalyst particles. Physicochemical processes contributing to the observed data are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Rerolle C, Wiart R (1996) Electrochim Acta 41:1063

    Article  CAS  Google Scholar 

  2. Aromaa J, Evans JW (2007) Encycl Electrochem 5:159

    CAS  Google Scholar 

  3. Felder A, Prengaman RD (2006) JOM 58:28

    Article  CAS  Google Scholar 

  4. Amadelli R, Maldotti A, Molinari A et al (2002) J Electroanal Chem 534:1

    Article  CAS  Google Scholar 

  5. Yu P, O’Keefe TJ (1999) J Electrochem Soc 146:1361

    Article  CAS  Google Scholar 

  6. Pavlov D, Monahov B (1996) J Electrochem Soc 143:3616

    Article  CAS  Google Scholar 

  7. Cachet C, Rerolle C, Wiart R (1996) Electrochim Acta 41:83

    Article  CAS  Google Scholar 

  8. Hyvärinen O (1972) Doctoral thesis: the effect of silver and cobalt on the oxygen evolution at lead anodes. Helsinki University of Technology, Espoo

  9. Yu P, O’Keefe TJ (2001) Proceedings of the 31st annual hydrometallurgy meeting. Toronto, p 129

  10. Schulze-Messing J, Alexander DC, Sole KC et al (2007) Hydrometallurgy 86:37

    Article  CAS  Google Scholar 

  11. Zhang W, Cheng CY (2007) Hydrometallurgy 89:178

    Article  CAS  Google Scholar 

  12. Niemi M (2007) Master’s thesis: the influence of process parameters on zinc electrolysis. Helsinki University of Technology, Espoo

  13. Gnoinski J, Bachmann T, Holtzhausen S (2005) Conference proceedings lead & zinc ’05. Kyoto, p 1315

  14. Yu P, O’Keefe TJ (2002) J Electrochem Soc 149:A558

    Article  CAS  Google Scholar 

  15. Pajunen L, Aromaa J, Forsén O (2003) Proceedings of the 5th international symposium of hydrometallurgy, vol 2. Vancouver, p 1255

  16. Ivanov I, Stefanov Y, Noncheva Z et al (2000) Hydrometallurgy 57:109

    Article  CAS  Google Scholar 

  17. Bombach H, Stelter M, Mohr KP et al (2003) Metall 57:386

    CAS  Google Scholar 

  18. Stelter M, Bombach H, Saltykov P (2005) BHM 150:1

    CAS  Google Scholar 

  19. Siegmund A, Prengaman D (2003) Proceedings of the 5th international symposium of hydrometallurgy, vol 2. Vancouver, p 1279

  20. Hein K, Duman I, Timur S (1994) Metall 48:532

    CAS  Google Scholar 

  21. Timur S, Hein K (1995) Metall 49:496

    CAS  Google Scholar 

  22. Stelter M, Hein K, Bauer I (1998) Proceedings of an international symposium on zinc and lead processing. Calgary, p 389

  23. Rodrigues JMS, Meyer EHO (1996) EPD congress, proceedings of sessions and symposia held at the TMS annual meeting. Anaheim, p 161

  24. Gonzalez JA (2001) Proceedings of the 31st annual hydrometallurgy meeting. Toronto, p 147

  25. Ivanov I, Stefanov Y, Noncheva Z et al (2000) Hydrometallurgy 57:125

    Article  CAS  Google Scholar 

  26. Hrussanova A, Mirkova L, Dobrev T (2001) Hydrometallurgy 60:199

    Article  CAS  Google Scholar 

  27. Hrussanova A, Mirkova L, Dobrev T (2002) J Appl Electrochem 32:505

    Article  CAS  Google Scholar 

  28. Hrussanova A, Mirkova L, Dobrev T et al (2004) Hydrometallurgy 72:205

    Article  CAS  Google Scholar 

  29. Hrussanova A, Mirkova L, Dobrev T (2004) Hydrometallurgy 72:215

    Article  CAS  Google Scholar 

  30. Stelter M, Hein K, Bauer I (1998) Erzmetall 51:281

    CAS  Google Scholar 

  31. Rashkov S, Dobrev T, Noncheva Z et al (1999) Hydrometallurgy 52:223

    Article  CAS  Google Scholar 

  32. Moats MS (2008) JOM 60:46

    Article  CAS  Google Scholar 

  33. Beer HB (1961) Ger. Pat. Appl. 1115721

  34. Beer HB (1966) Neth. Pat. Appl. 6606302

  35. Beer HB (1972) US Patent 6800834

  36. Beer HB (1976) US Patent Reissue 28820

  37. Beer HB, Hinden JM (1981) Eur. Pat. Appl. 27051

  38. Beer HB, Hinden JM (1982) Eur. Pat. Appl. 46447

  39. Hinden JM, Beer HB (1982) Eur. Pat. Appl. 46449

  40. Chandler GK, Genders JD, Pletcher D (1997) Platin Met Rev 41:54

    CAS  Google Scholar 

  41. Hayfield PCS (1998) Platin Met Rev 42:27

    CAS  Google Scholar 

  42. Hayfield PCS (1998) Platin Met Rev 42:46

    CAS  Google Scholar 

  43. Pavlovic MG, Dekanski A (1997) J Solid State Electrochem 1:208

    Article  CAS  Google Scholar 

  44. Cobley AJ, Gabe DR, Graves JE (2001) Trans Inst Met Finish 79:112

    CAS  Google Scholar 

  45. Chen G (2004) Sep Purif Technol 38:11

    Article  Google Scholar 

  46. Cardarelli F, Taxil P, Savall A et al (1998) J Appl Electrochem 28:245

    Article  CAS  Google Scholar 

  47. Hayfield PCS (1998) Platin Met Rev 42:116

    CAS  Google Scholar 

  48. Robinson D, MacDonald S, Todaro F (2003) Proceedings—electrochemical society—electrochemistry in mineral and metal processing VI, vol 18, Paris, France, p 355

  49. Wang S (2008) JOM 60:41

    Article  CAS  Google Scholar 

  50. Treasure PA (2003) Proceedings—electrochemical society—electrochemistry in mineral and metal processing VI, vol 18, Paris, France, p 367

  51. Bestetti M, Ducati U, Kelsall GH et al (2001) Can Metall Quart 40:451

    CAS  Google Scholar 

  52. Thonstad J (1998) Elektrolyseprosesser. Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  53. Åkre T (2008) Doctoral thesis: electrowinning of cobalt from chloride solutions—anodic deposition of cobalt oxide on DSA. Norwegian University of Science and Technology, Trondheim

  54. Nijjer S (2000) Doctoral thesis: deposition and reduction of manganese dioxide on alternative anode materials in zinc electrowinning. Norwegian University of Science and Technology, Trondheim

  55. Da Silva LM, Boodts JFC, De Faria LA (2001) Electrochim Acta 46:1369

    Article  CAS  Google Scholar 

  56. Chen X, Chen G (2005) J Electrochem Soc 152:J59

    Article  CAS  Google Scholar 

  57. Shrivastava P, Moats MS (2008) J Electrochem Soc 155:E101

    Article  CAS  Google Scholar 

  58. Beer HB (1982) Eur. Pat. Appl. 46727

  59. Beer HB, Katz M, Hinden J (1983) Eur. Pat. Appl. 87186

  60. Ferdman A (2000) US Patent 6129822

  61. Chmiola J, Gogotsi Y, Ferdman A (2003) Sci Sinter 35:75

    Article  CAS  Google Scholar 

  62. Weems D, Schledorn M, Farmer MD (2005) An insoluble titanium-lead anode for sulfate electrolytes. Available via DIALOG: http://www.osti.gov/bridge/servlets/purl/840009-oPsbtt/840009.PDF. Accessed 24 Oct 2008

  63. Dattilo M (1997) US Patent 5632872

  64. Dattilo M, Lutz LJ (2001) Proceedings of the 31st annual hydrometallurgy meeting. Toronto, p 447

  65. Dattilo M, Lutz LJ (1999) Proceedings of the 4th COPPER-COBRE international conference, vol 3. Phoenix, p 597

  66. Hardee KL, Moats MS (2000) Proceedings—electrochemical society—electrochemistry in mineral and metal processing V, vol 14, Toronto, Canada, p 294

  67. Moats M, Hardee K, Brown C Jr (2003) JOM 55:46

    Article  CAS  Google Scholar 

  68. Alfantazi AM, Moskalyk RR (2003) JOM 55:49

    Article  CAS  Google Scholar 

  69. Wiesener K, Schneider W, Moebius A (1989) J Electrochem Soc 136:3770

    Article  CAS  Google Scholar 

  70. Bestetti M, Ducati U, Kelsall G et al (2001) Can Metall Quart 40:459

    CAS  Google Scholar 

  71. Csicsovszki G, Kekesi T, Toeroek TI (2005) Hydrometallurgy 77:19

    Article  CAS  Google Scholar 

  72. Ho CN, Hwang BJ (1994) J Electroanal Chem 377:177

    Article  CAS  Google Scholar 

  73. Tikka P (2006) Master’s thesis: gas evolving lead anodes—Kaasun kehitys Lyijianodeilla (in Finnish language). Helsinki University of Technology, Espoo

  74. Musiani M, Guerriero P (1998) Electrochim Acta 44:1499

    Article  CAS  Google Scholar 

  75. Palmas S, Polcaro AM, Ferrara F et al (2008) J Appl Electrochem 38:907

    Article  CAS  Google Scholar 

  76. Vertova A, Borgese L, Cappelletti G et al (2008) J Appl Electrochem 38:973

    Article  CAS  Google Scholar 

  77. Brungs A, Haddadi-Asl V, Skyllas-Kazacos M (1996) J Appl Electrochem 26:1117

    Article  CAS  Google Scholar 

  78. Veräjänkorva S (2005) Master’s thesis: thermal spraying of catalytic materials. Tampere University of Technology, Tampere

  79. Gaertner F, Stoltenhoff T, Schmidt T et al (2006) J Therm Spray Technol 15:223

    Article  CAS  Google Scholar 

  80. Barker MH, Hyvärinen O, Osara K (2007) PCT Int. Appl. 2007045716

  81. Cole PM, Sole KC (2002) J S Afr Inst Min Metall 8:451

    Google Scholar 

  82. Sole KC, Feather AM, Cole PM (2005) Hydrometallurgy 78:52

    Article  CAS  Google Scholar 

  83. Olenius E (2002) Master’s thesis: oxygen evolving catalytic oxide layers preparation and characterisation—Hapen kehitystä katalysoivien oksidikerrosten valmistus ja karakterisointi (in Finnish language). Oulu University, Oulu

  84. Kokhanov GN, Agapova RA, Milova NG (1972) Elektrokhimiya 8:862

    CAS  Google Scholar 

  85. Kalinovskii EA, Shustov VA, Chaikovskaya VM et al (1976) Elektrokhimiya 12:1573

    CAS  Google Scholar 

  86. Morita M, Iwakura C, Tamura H (1977) Electrochim Acta 22:325

    Article  CAS  Google Scholar 

  87. Gorbachev AK, Krech EE, Shmorgun VI (1977) Elektrokhimiya 13:1046

    CAS  Google Scholar 

  88. Morita M, Iwakura C, Tamura H (1978) Electrochim Acta 23:331

    Article  CAS  Google Scholar 

  89. Morita M, Iwakura C, Tamura H (1979) Electrochim Acta 24:357

    Article  CAS  Google Scholar 

  90. Yang J, Shu Y, Jiang H (1987) Zhongnan Kuangye Xueyuan Xuebao 18:98

    CAS  Google Scholar 

  91. Habazaki H, Matsui T, Kawashima A et al (2001) Scr Mater 44:1659

    Article  CAS  Google Scholar 

  92. Matsui T, Habazaki H, Kawashima A et al (2002) J Appl Electrochem 32:993

    Article  CAS  Google Scholar 

  93. El-Moneim AA, Kumagai N, Asami K et al (2005) Mater Trans JIM 46:309

    Article  CAS  Google Scholar 

  94. Cattarin S, Musiani M (2006) Electrochim Acta 52:1339

    Article  Google Scholar 

  95. Chabre Y, Pannetier J (1995) Prog Solid State Chem 23:1

    Article  CAS  Google Scholar 

  96. Ruetschi P (1984) J Electrochem Soc 131:2737

    Article  CAS  Google Scholar 

  97. Xia X, Li H, Chen ZH (1989) J Electrochem Soc 136:266

    Article  CAS  Google Scholar 

  98. Kanungo SB, Parida KM, Sant BR (1981) Electrochim Acta 26:1157

    Article  CAS  Google Scholar 

  99. Hill LI, Verbaere A, Guyomard D (2003) J Electrochem Soc 150:D135

    Article  CAS  Google Scholar 

  100. Sloane NJA (1998) Nature (London) 395:435

    Article  CAS  Google Scholar 

  101. Faulkner LR, Bard AJ (2001) Electrochemical methods, fundamentals and application, 2nd edn. Wiley, New York

    Google Scholar 

  102. Stulik K, Amatore C, Holub K et al (2000) Pure Appl Chem 72:1483

    Article  CAS  Google Scholar 

  103. Davies TJ, Banks CE, Compton RG (2005) J Solid State Electrochem 9:797

    Article  CAS  Google Scholar 

  104. Davies TJ, Compton RG (2005) J Electroanal Chem 585:63

    Article  CAS  Google Scholar 

  105. Ordeig O, del Campo J, Munoz FX et al (2007) Electroanalysis 19:1973

    Article  CAS  Google Scholar 

  106. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, Oxford

    Google Scholar 

  107. Kaskiala T, Salminen J (2003) Ind End Chem Res 42:1827

    Article  CAS  Google Scholar 

  108. Janssen LJJ (1992) J Appl Electrochem 22:1091

    Article  CAS  Google Scholar 

  109. Janssen LJJ, Barendrecht E (1984) Electrochim Acta 29:1207

    Article  CAS  Google Scholar 

  110. Lobo VMM (1989) Handbook of electrolyte solutions. Elsevier, New York

    Google Scholar 

  111. Vogt H (1983) In: Yeager E, Bockris JOM, Conway BE, Sarangapani S (eds) Comprehensive treatise of electrochemistry, vol 6: electrodics, transport. Plenum Press, New York

    Google Scholar 

  112. Baum T, Satherley J, Schiffrin DJ (1998) Langmuir 14:2925

    Article  CAS  Google Scholar 

  113. Lantelme F, Groult H (2004) J Electrochem Soc 151:D121

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Tekes is acknowledged for funding under the project ‘Spraying of Catalytic Coatings for ElectRodes’ (97/31/04). Outokumpu Foundation is thanked for funding S. Schmachtel and Dr. Olli Hyvärinen is thanked for his input in the early stages of this project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sönke Schmachtel or Kyösti Kontturi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmachtel, S., Toiminen, M., Kontturi, K. et al. New oxygen evolution anodes for metal electrowinning: MnO2 composite electrodes. J Appl Electrochem 39, 1835–1848 (2009). https://doi.org/10.1007/s10800-009-9887-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-009-9887-1

Keywords

Navigation