Skip to main content

Advertisement

Log in

Morphological and electrochemical investigation of RuO2–Ta2O5 oxide films prepared by the Pechini–Adams method

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Preparation methods can profoundly affect the structural and electrochemical properties of electrocatalytic coatings. In this investigation, RuO2–Ta2O5 thin films containing between 10 and 90 at.% Ru were prepared by the Pechini–Adams method. These coatings were electrochemically and physically characterized by cyclic voltammetry, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The composition and morphology of the oxide were investigated before and after accelerated life tests (ALT) by EDX and SEM. SEM results indicate typical mud-flat-cracking morphology for the majority of the films. High resolution SEMs reveal that pure oxide phases exhibit nanoporosity while binary compositions display a very compact structure. EDX analyses reveal considerable amounts of Ru in the coating even after total deactivation. XRD indicated a rutile-type structure for RuO2 and orthorhombic structure for Ta2O5. XPS data demonstrate that the binding energy of Ta is affected by Ru addition in the thin films, but the binding energy of Ru is not likewise influenced by Ta. The stability of the electrodes was evaluated by ALT performed at 750 mA cm−2 in 80 °C 0.5 mol dm−3 H2SO4. The performance of electrodes prepared by the Pechini–Adams method is 100% better than that of electrodes prepared by standard thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Vercesi GP, Rolewicz J, Comninellis C, Hinden J (1991) Thermochim Acta 176:31

    Article  CAS  Google Scholar 

  2. McKinley KA, Sandler NP (1996) Thin Solid Films 291:440

    Article  Google Scholar 

  3. Ushikubo T (2000) Catal Today 57:331

    Article  CAS  Google Scholar 

  4. Ribeiro J, De Andrade AR (2004) J Electrochem Soc 151:D106

    Article  CAS  Google Scholar 

  5. Chang TY, Wang X, Evans DA et al (2002) J Power Sources 110:138

    Article  CAS  Google Scholar 

  6. Newalkar BL, Komarneni S, Katsuki H (2002) Mater Lett 57:444

    Article  CAS  Google Scholar 

  7. Lin SM, Wen TC (1993) J Appl Electrochem 23:487

    CAS  Google Scholar 

  8. Pelegrino RRL, Vicentin LC, De Andrade AR et al (2002) Electrochem Commun 4:139

    Article  CAS  Google Scholar 

  9. Ardizzone S, Carugati A, Trasatti S (1981) J Electroanal Chem 126:287

    Article  CAS  Google Scholar 

  10. DeBattisti A, Lodi G, Nanni L et al (1997) Can J Chem 75:1759

    Article  CAS  Google Scholar 

  11. Trasatti S, Buzzanca G (1971) J Electroanal Chem 29:1

    Article  CAS  Google Scholar 

  12. Coteiro RD, Teruel FS, Ribeiro J et al (2006) J Braz Chem Soc 17:771

    Article  CAS  Google Scholar 

  13. Tilak BV, Birss VI, Wang J et al (2001) J Electrochem Soc 148:D112

    Article  CAS  Google Scholar 

  14. Trasatti S (1991) Electrochim Acta 36:225

    Article  CAS  Google Scholar 

  15. Terezo AJ, Pereira EC (2002) Mater Lett 53:339

    Article  CAS  Google Scholar 

  16. Pechini MP, Adams N (1967) US Patent 3, 330, 697:1

  17. Santos MC, Terezo AJ, Fernandes VC et al (2005) J Solid State Electrochem 9:91

    Article  CAS  Google Scholar 

  18. Ronconi CM, Pereira EC (2001) J Appl Electrochem 31:319

    Article  CAS  Google Scholar 

  19. Forti JC, Olivi P, De Andrade AR (2001) Electrochim Acta 47:913

    Article  CAS  Google Scholar 

  20. Profeti D, Lassali TAF, Olivi P (2006) J Appl Electrochem 36:883

    Article  CAS  Google Scholar 

  21. Ribeiro J, Alves PDP, De Andrade AR (2007) J Mater Sci 42:9293

    Article  CAS  Google Scholar 

  22. Garavaglia R, Mari CM, Trasatti S (1984) Surf Technol 23:41

    Article  CAS  Google Scholar 

  23. Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley, San Francisco

    Google Scholar 

  24. Powder Diffraction File: 40-1290; 25-0922; 01-1197 (1996) Joint Committee on Powder Diffraction Standards, International Center for Diffraction Data, Vol. PDF2-46, Pennsylvania, USA

  25. Nanni L, Polizzi S, Benedetti A et al (1999) J Electrochem Soc 146:220

    Article  CAS  Google Scholar 

  26. Hume-Rothery W, Smallman RE, Hayworth CW (1969) The structure of metals and alloy. London

  27. Kristof J, Szilagyi T, Horvath E et al (2005) Thin Solid Films 485:90

    Article  CAS  Google Scholar 

  28. Kotz R, Stucki S (1986) Electrochim Acta 31:1311

    Article  Google Scholar 

  29. Shen JY, Adnot A, Kaliaguine S (1991) Appl Surf Sci 51:47

    Article  CAS  Google Scholar 

  30. Rochefort D, Dabo P, Guay D et al (2003) Electrochim Acta 48:4245

    Article  CAS  Google Scholar 

  31. Wang CC, Hu CC (2005) Carbon 43:1926

    Article  CAS  Google Scholar 

  32. Atanassova E, Dimitrova T, Koprinarova J (1995) Appl Surf Sci 84:193

    Article  CAS  Google Scholar 

  33. Kuo Y (1992) J Electrochem Soc 139:579

    Article  CAS  Google Scholar 

  34. Trasatti S, Lodi G (1981) Properties of conductive metal oxides with rutile type structure. Elsevier, Amsterdam

    Google Scholar 

  35. Da Silva LA, Alves VA, Da Silva MAP et al (1997) Electrochim Acta 42:271

    Article  CAS  Google Scholar 

  36. Ribeiro J, De Andrade AR, Bento CAS et al (2003) Acta Microsc 12:115

    Google Scholar 

  37. Ribeiro J, De Andrade AR (2006) J Electroanal Chem 592:153

    Article  CAS  Google Scholar 

  38. Kotz R, Stucki S, Scherson D et al (1984) J Electroanal Chem 172:211

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from FAPESP, CNPq and the Center of Advanced Separation Technologies is gratefully acknowledged. J. Ribeiro also acknowledges a PhD fellowship (FAPESP -# 02/06465-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adalgisa R. De Andrade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribeiro, J., Moats, M.S. & De Andrade, A.R. Morphological and electrochemical investigation of RuO2–Ta2O5 oxide films prepared by the Pechini–Adams method. J Appl Electrochem 38, 767–775 (2008). https://doi.org/10.1007/s10800-008-9506-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9506-6

Keywords

Navigation