Skip to main content
Log in

Thin-film composite nanofiltration membranes prepared by electropolymerization

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel approach to preparation of composite asymmetric nanofiltration membranes is reported based on a thin selective layer deposited by electropolymerization (EP) on top of an asymmetrically porous and electronically conductive porous support. Support films with ultrafiltration characteristics were cast from a concentrated dispersion of carbon black particles, a few tens of nanometers large, in a solution of polysulfone followed by precipitation in a non-solvent bath (phase inversion). Composite membranes with poly(phenylene oxide) and polyaniline thin top layers were prepared by EP deposition from solutions of phenol and aniline, respectively, of which polyaniline film demonstrated a dense uniform structure and water flux and rejection to sucrose and magnesium sulfate in the nanofiltration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rautenbach R, Gröschl A (1990) Desalination 77:73

    CAS  Google Scholar 

  2. Van der Bruggen B, Schaep J, Wilms D, Vandecasteele C (1999) J Memb Sci 156:29

    Article  Google Scholar 

  3. Schaefer A, Fane A, Waite T (2002) Nanofiltration principles and applications. Elsevier, Oxford, UK

    Google Scholar 

  4. Petersen RJ (1993) J Memb Sci 83:81

    Article  CAS  Google Scholar 

  5. Vankelekom IFJ, De Smet K, Gevers L, Jacobs PA (2004) In: Schaefer A, Fane A, Waite T (eds) Nanofiltration principles and applications. Elsevier, Oxford, UK

  6. Amjad Z (1993) Reverse osmosis: Membrane technology, water chemistry and industrial applications. Chapman & Hall, New York, USA

    Google Scholar 

  7. Mulder M (1996) Basic principles of membrane technology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  8. Bellona C, Drewes J, Xua P, Amy G (2004) Water Res 38:2795

    Article  CAS  Google Scholar 

  9. Agenson K, Oh J, Urase T (2003) J Memb Sci 225:91

    Article  CAS  Google Scholar 

  10. Lund H, Hammerich O (2001) Organic electrochemistry. Marcel Dekker, New York, USA

    Google Scholar 

  11. Mantell CL (1968) Carbon and graphite handbook. Interscience Publishers

  12. Ezquerra TA, Connor MT, Roy S, Kulescza M, Fernandes-Nscimento J, Balta-Calleja FJ (2001) Compos Sci Technol 61:903

    Article  CAS  Google Scholar 

  13. Barkauskas J, Vinslovaite A (2003) Mater Res Bull 38:1437

    Article  CAS  Google Scholar 

  14. Heaney MB (1997) Physica A 241:296

    Article  CAS  Google Scholar 

  15. Jaeger KM, McQueen DH (2001) Polymer 42:9575

    Article  Google Scholar 

  16. Zhao Z, Yu W, He X, Chen X (2003) Mater Lett 57:3082

    Article  CAS  Google Scholar 

  17. Ishigure Y, Iijima S, Ito H, Ota T, Unuma H, Takahashi M, Hikichi Y, Suzuki H (1999) J Mater Sci 34:2979

    Article  CAS  Google Scholar 

  18. Regev O, ElKati PNB, Loos J; Koning C E (2004) Adv Mater 16:248

    Article  CAS  Google Scholar 

  19. Mengoli G, Musiani M (1987) J Electrochem Soc 134:643C

    Article  CAS  Google Scholar 

  20. McCarley R, Irene E, Murray R (1991) J Phys Chem 95:2492

    Article  CAS  Google Scholar 

  21. Roser S, Caruana D, Gerstenberg M (1996) J Electroanal Chem 411:153

    Article  Google Scholar 

  22. Kanungo M, Kumar A, Contractor A (2002) J Electroanal Chem 528:46

    Article  CAS  Google Scholar 

  23. Sazou D, Georgolios C (1997) J Electroanal Chem 429:81

    Article  CAS  Google Scholar 

  24. Yano J, Ohnishi T, Kitani A (1999) Synth Met 101:752

    Article  CAS  Google Scholar 

  25. Stropnik C, Kaiser V (2002) Desalination 145:1

    Article  CAS  Google Scholar 

  26. Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) Biophys J 87:4259

    Article  CAS  Google Scholar 

  27. Eltekova NA, Razd’yakonova GI, Eltekov YuA (1993) Pure Appl Chem 65:2217

    Article  CAS  Google Scholar 

  28. Cabot Corporation (1989) Carbon black dispersion, technical report S-131. Special Blacks Division of Billerica, MA, USA

  29. Bandyopadhyaya R, Nativ-Roth E, Regev O, Yerushalmi-Rozen R (2002) Nano Lett 2:25

    Article  CAS  Google Scholar 

  30. Shvartzman-Cohen R, Levi-Kalisman Y, Nativ-Roth E, Yerushalmi-Rozen R (2004) Langmuir 20:6085

    Article  CAS  Google Scholar 

  31. Grossiord N, Loos J, Regev O, Koning CE (2006) Chem Mater 18:1089

    Article  CAS  Google Scholar 

  32. Grunlan JC, Bloom FL, Gerberich WW, Francis LF (2001) J Mater Sci Lett 20:1523

    Article  CAS  Google Scholar 

  33. Bigg DM (1984) J Rheology 28:501

    Article  CAS  Google Scholar 

  34. Luo S, Wong C (2000) IEEE Trans Compon Pack Technol 23:151

    Article  CAS  Google Scholar 

  35. Skowronski JM, Krawzyk P (2004) J Solid State Electrochem 8:442

    Article  CAS  Google Scholar 

  36. Camalet J-L, Lacroix J-C, Dung Nguen T, Aeiyach S, Pham MC, Petitjean J, Lacaze P-C (2002) J Electroanal Chem 485:13

    Article  Google Scholar 

  37. Koros W J, Ma YH, Shimidzu T (1996) J Memb Sci 120:149

    Article  CAS  Google Scholar 

  38. Freger V (2003) Langmuir 19:4791

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the NATAF program of the Ministry of Trade and Industry of Israel. The authors thank the electron microscopy unit of the Ilse Katz Center for Nanosciences at Ben-Gurion University and Ms. Lubov Burlaka for taking SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viatcheslav Freger.

Appendix. Derivation of Eq. 1 for circular and rectangular geometries

Appendix. Derivation of Eq. 1 for circular and rectangular geometries

Given the electrochemical cell design, i.e., a circular film of diameter D clamped at the entire edge and collecting a uniform current density i, the change in potential in the radial direction can be described by a system of differential Eqs. A1 and A2:

$$ I(r) = - 2\pi rh\sigma \frac{{d\varphi }} {{dr}}. $$
(A1)
$$ dI = - 2\pi ridr $$
(A2)

where φ is the potential, I(r) the current flowing through the film in the radial direction at radial position r, h the film thickness, and σ is the specific conductivity of the film. From the radial symmetry I(0) = 0, then at r = D/2, we solve Eqs. A1 and A2 to obtain

$$ \Updelta \varphi = \varphi (r = D/2) - \varphi (r = 0) = \frac{{iD^2 }} {{16\sigma h}} $$
(A3)

where Δφ is the potential drop from the current collector to the center of the circular anode and D is the diameter of the anode. For a rectangular film of length L clamped (connected to the same current collector) at the opposite edges, r and 2πr in Eqs. A1 and A2 are replaced with x (length coordinate) and a constant width W, respectively, and, after integrating from x = 0 (the center of the film) to x = L/2 (the edge), Eq. A3 is replaced with

$$ \Updelta \varphi = \frac{{iL^2 }} {{8\sigma h}}, $$
(A4)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gloukhovski, R., Oren, Y., Linder, C. et al. Thin-film composite nanofiltration membranes prepared by electropolymerization. J Appl Electrochem 38, 759–766 (2008). https://doi.org/10.1007/s10800-008-9505-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-008-9505-7

Keywords

Navigation