Skip to main content
Log in

Polypyrrole artificial muscles: a new rhombic element. Construction and␣electrochemomechanical characterization

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A novel rhombus-shaped electrochemomechanical unit constituted by 4 polypyrrole bilayer (conducting polymer/tape) muscles and two plastic hinges, able to transform reversible angular movements from the basic bilayers into longitudinal movements, has been successfully constructed and electrochemically characterized. During operation two of the bilayers act as anode and the other two as cathode. Thus, all the electrical energy is used, avoiding an additional metallic counterelectrode and the subsequent generation of products able to degrade the muscle. The reference electrode is short-circuited to the counterelectrode in order to monitor the muscle potential along the galvanostatic experiments and the sensing abilities of the device. The devices were checked by repetitive galvanostatic contraction/extension of up to 20% of the original length. About 50% of the devices produced irregular movements, due to different ohmic resistances in the electrical contacts between the wires and polymeric films. Once the contacts were improved, the new devices showed good reproducibility. The influence of electrolyte concentration, experimental current and weight trailed by the device indicates that the complex device maintains most of the sensing properties of the basic bilayer muscles. Then checking the life-time of the device, contact failures and fissures around the metal/polymer joint were immediately detected from the chronopotentiometric noises which appeared after several cycles. Such failures must be solved before the device can be miniaturized and in order to construct different shapes, and three-dimensional sensing muscles for robotics from combinations of basic units.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otero T.F., Angulo E., Rodríguez J. and Santamaria C.J., (1992). J. Electroanal. Chem. 341: 369

    Article  CAS  Google Scholar 

  2. Pei Q. and Inganas O., (1992). Adv. Mat. 4: 277

    Article  CAS  Google Scholar 

  3. Baughman R.H., (1991). Makromolekulare Chemie-Macromolecular Symposia 51: 193

    CAS  Google Scholar 

  4. R.H. Baughman, L.W. Shacklette, R.L. Elsenbaumer, E. Plitchta and C. Becht, in J.L. Brédas and R.R. Chance (Eds.), Opportunities in Electronics, Optoelectronics and Molecular Electronics, (Kuwler Acad. Pub. Netherlands 1990), pp. 559–582.

  5. D. DeRossi, Research and Development 67, (1989)

  6. Burgmayer P. and Murray R.W., (1982). J. Am. Chem. Soc. 104: 6139

    Article  CAS  Google Scholar 

  7. Françoise B., Mermilliod N. and Zuppiroli L., (1981). Synth. Met. 4: 131

    Article  Google Scholar 

  8. Okabayashi K., Goto F., Abe K. and Yoshida T., (1987). Synth. Met. 18: 365

    Article  CAS  Google Scholar 

  9. Slama M. and Tanguy J., (1989). Synth. Met. 28: 171

    Article  Google Scholar 

  10. Smela E., (2003). Adv. Mat. 15: 481

    Article  CAS  Google Scholar 

  11. Cortés M.T. and Moreno J.C., (2003). e-Polymers 42: 1

    Google Scholar 

  12. Otero T.F. and Cortés M.T., (2003). Adv. Mat. 15: 279

    Article  CAS  Google Scholar 

  13. Otero T.F. and Cortés M.T., (2003). Sensors and Actuators B: Chemical. 96: 152

    Article  CAS  Google Scholar 

  14. Baughman R.H., (1996). Synth Met. 78: 339

    Article  CAS  Google Scholar 

  15. Jager E.W.H. , Inganas O. and Lundstrom I., (2000). Science 288: 2335

    Article  PubMed  CAS  Google Scholar 

  16. Jager E.W.H., Smela E. and Inganas O., (2000). Science 290: 1540

    Article  PubMed  CAS  Google Scholar 

  17. Cortés M.T., (2002). Músculos Artificiales de Tricapa: caracterización y diseño de dispositivos, Doctoral Theses. University of the Basque Country, Donostia, Spain

    Google Scholar 

  18. T.F. Otero, Handbook of Organic Conductive Molecules and Polymers: Vol. 4. Conductive Polymers, 1997 John Wiley & sons Ltd

  19. Otero T.F. and Sansiñena J.M., (1998). Adv. Mat. 10: 491

    Article  CAS  Google Scholar 

  20. Otero T.F. and Sansiñena J.M., (1997). Bioelectrochemistry and Bioenergetics 42:117

    Article  CAS  Google Scholar 

  21. Otero T.F., Rodríguez J., Angulo E. and Santamaría C., (1993). Synth. Met. 55–57: 3713

    Article  Google Scholar 

  22. T.F. Otero et al., Spanish patents EP-9200095 and EP-9202628

Download references

Acknowledgements

The authors acknowledge the support of the Spanish Ministry of Science and Technology, project BQ2001–0477, and of the Seneca Foundation PI-25/00827/FS/01. M. Broschart thanks G. Vázquez for her preparative studies, technical assistance and advisory activities in the matters related to this subject.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Broschart.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otero, T., Broschart, M. Polypyrrole artificial muscles: a new rhombic element. Construction and␣electrochemomechanical characterization. J Appl Electrochem 36, 205–214 (2006). https://doi.org/10.1007/s10800-005-9048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9048-0

Key words:

Navigation