Skip to main content
Log in

Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

We have investigated some anodic and cathodic transformations using boron doped diamond (BDD) electrodes. The oxidation of a propargylic alcohol as well as the aromatic side chain oxidation in water as electrolyte did not␣yield the desired products in high yield and selectivity and led mainly to the formation of CO2 due to␣electrochemical incineration of the starting material. With methanol as electrolyte, however, the reactivity of BDD electrodes is similar to graphite in most anodic methoxylation reactions, but the inactive behaviour of BDD electrodes leads to a different reaction pathway possibly involving methoxyl radicals with charge transfer from the electrolyte. It has been found that at BDD anodes benzylic single and double bonds can be split yielding aromatic acetals and esters. With phenanthrenes as starting material, o,o′-disubstituted biaryls were obtained. So the use of BDD electrodes provides an efficient and environmentally friendly access to this interesting class of compounds. The high H2 overpotential of BDD cathodes enables smooth and selective reduction of functional groups like oximes. Due to the high chemical and mechanical stability of the diamond layer of today’s electrodes, electrode lifetime as well as reproducibility of the electrosyntheses has improved markedly. Aqueous basic conditions, however, must be avoided for BDD anodes. These conditions result in degradation of the diamond surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Fryda, Th. Mathée, S. Mulcahy, M. Höfer, L. Schäfer and I. Tröster, in ‘The Electrochemical Society Interface, Spring 2003’, (2003), pp. 40–44 and references cited therein

  2. Michaud P.-A., Mahé E., Haenni W., Perret A., Comninellis Ch. (2000) Electrochem. and Solid-State Lett. 3: 77

    Article  CAS  Google Scholar 

  3. Janssen L.J.J., Blijlevens M.H.A. (2003) Electrochimica Acta 48: 3959

    Article  CAS  Google Scholar 

  4. Saha M.S., Furuta T., Nishiki Y. (2004) Electrochem. Commun. 6: 201

    Article  CAS  Google Scholar 

  5. P.-A. Michaud, Ch. Comninellis, W. Haenni, A. Perret, J. Niesta, M. Fryda and L. Schaefer, in ‘Electrochemical Society Proceedings’, Vol. 2001–23 (2003), pp. 87–96

  6. European Patent EP 1 036 861 B1 (BASF AG)

  7. German Patent DE 103 13 169 A1 (Degussa AG)

  8. Zollinger D., Griesbach U., Pütter H., Comninellis Ch. (2004) Electrochem. Commun. 6: 600

    Article  CAS  Google Scholar 

  9. Zollinger D., Griesbach U., Pütter H., Comninellis Ch. (2004) Electrochem. Commun. 6: 605

    Article  CAS  Google Scholar 

  10. Canizares P., Diaz M., Dominguez J.A., Garcia-Gomez J., Rodrigo M.A. (2002) Ind. Eng. Chem. Res. 41: 4187

    Article  CAS  Google Scholar 

  11. Iniesta J., Michaud P.-A., Panizza M., Comninellis Ch. (2001) Electrochem. Commun. 3: 346

    Article  CAS  Google Scholar 

  12. Marselli B., Garcia-Gomez J., Michaud P.-A., Rodrigo M.A., Comninellis Ch. (2003) J. Electrochem. Soc. 150: D79

    Article  CAS  Google Scholar 

  13. Zollinger D. (2004) Electrochemical Reactions at Diamond Electrodes in Aqueous and Non-aqueous Solutions, Diploma thesis. Swiss Federal Institute of Technology, Lausanne

    Google Scholar 

  14. Loyson P., Grouws S., Zeelie B. (2002) S. Afr. J. Chem. 55: 125

    CAS  Google Scholar 

  15. Shono T., Matsumura Y., Inoue K., Iwasaki F. (1986) J. Chem. Soc. Perkin Trans. I: 73

    Article  Google Scholar 

  16. Martin H.B., Argoita A., Landau U., Anderson A.B., Angus J.C. (1996) J. Electrochem. Soc. 143: L133

    Article  CAS  Google Scholar 

  17. 9 was prepared by Friedel-Crafts acylation of benzene with 4-chloro-butyryl chloride (W.J. Close, J. Am. Chem. Soc. 79 (1957) 1455) followed by oximation (H.G.O. Becker, R. Beckert, G. Domschke, E. Fanghänel, W.D. Habicher, P. Metz, D.Pavel and K. Schwetlick, Organikum, Organisch-chemisches Grundpraktikum (Wiley-VCH, Weinheim, 2001), 675 pp)

  18. (a) V. Wolf, Chem. Ber. 87 (1954) 668; (b) J. Kaulen and H.J. Schäfer, Tetrahedron 38 (1982) 3299

  19. US patent 5 002 641 (Reilly Industries, Inc.) and references cited therein

  20. E. Steckhahn and C. Kandzia, Synlett (1992) 139

  21. DeClements R., Swain G.M. (1997) J. Electrochem. Soc. 144: 856

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the BASF AG is gratefully acknowledged. The authors thank Philippe Rychen and Werner Haenni (CSEM SA) for helpful discussions, Heidrun Machwirth, Michaela Kimmel and Volker Steuer for technical assistance and Dr. Harald Winsel (all BASF AG) for providing oxime 9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Griesbach.

Additional information

Dedicated to Professor G. Kreysa on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griesbach, U., Zollinger, D., Pütter, H. et al. Evaluation of boron doped diamond electrodes for organic electrosynthesis on a preparative scale . J Appl Electrochem 35, 1265–1270 (2005). https://doi.org/10.1007/s10800-005-9038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-005-9038-2

Keywords

Navigation