Skip to main content

Advertisement

Log in

Comparison of macular and optic disc vessel density in thyroid orbitopathy: a comparative octa study

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To determine the microvascular and structural changes in the peripapillary and macular areas observed in patients with active thyroid orbitopathy(TO) before and after steroid treatment and compare with inactive TO and the control group by optical coherence tomography angiography (OCTA).

Material and Method

This cross-sectional study included 34 eyes of 17 active TO patients, 108 eyes of 54 inactive TO patients, and 60 eyes of 30 healthy controls. Central macular thickness (CMT), ganglion cell layer-inner plexiform layer (GCL-IPL) thickness, central choroidal thickness (CCT), retinal nerve fiber layer (RNFL) thickness, choroidal thickness in the peripapillary region, superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris vessel densities were determined by OCTA in before and after 12-week steroid treatment of active TO cases, inactive TO and control groups.

Results

Between the three groups in macula OCTA, a statistically significant difference was observed in the inferior and nasal quadrants in SCP (all p = 0.01) and only in the temporal quadrant choriocapillaris (p = 0.005). In peripapillary OCTA, a statistically significant difference was found only in the central choriocapillaris (p = 0.03). In the comparison of the active group before and after treatment, there was a statistically significant decrease in CMT and CCT; a statistically significant increase was observed in GCL-IPL (all p < 0.01). There was a statistically significant decrease in SCP and DCP only in the central (all p < 0.01). There was a statistically significant increase was found in the lower quadrant macular SCP vessel density and mean macular DCP in post-treatment measurements (p = 0.01 and p = 0.03, respectively). Peripapillary SCP and DCP vessel density was increased after treatment (p < 0.01).

Conclusion

Active TO group had lower vessel density than inactive group and after treatment, vessel density was increased. Non-invasive quantitative analysis of retinal and optic disc perfusion using OCTA could be useful in early treatment before complications occur and monitoring patients with TO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burch HB, Wartofsky L (1993) Graves’ ophthalmopathy: current concepts regarding pathogenesis and management. Endocr Rev 14:747–793. https://doi.org/10.1210/edrv-14-6-747. (PMID: 8119236)

    Article  CAS  PubMed  Google Scholar 

  2. Prummel MF, Bakker A, Wiersinga WM, Baldeschi L, Mourits MP, Kendall-Taylor P, Perros P, Neoh C, Dickinson AJ, Lazarus JH, Lane CM, Heufelder AE, Kahaly GJ, Pitz S, Orgiazzi J, Hullo A, Pinchera A, Marcocci C, Sartini MS, Rocchi R, Nardi M, Krassas GE, Halkias A (2003) Multi-center study on the characteristics and treatment strategies of patients with Graves’ orbitopathy: the first European Group on Graves’ Orbitopathy experience. Eur J Endocrinol 148(5):491–495. https://doi.org/10.1530/eje.0.1480491. (PMID: 12720530)

    Article  CAS  PubMed  Google Scholar 

  3. Tanda ML, Piantanida E, Liparulo L, Veronesi G, Lai A, Sassi L, Pariani N, Gallo D, Azzolini C, Ferrario M, Bartalena L (2013) Prevalence and natural history of Graves’ orbitopathy in a large series of patients with newly diagnosed graves’ hyperthyroidism seen at a single center. J Clin Endocrinol Metab 98(4):1443–1449. https://doi.org/10.1210/jc.2012-3873. (Epub 2013 Feb 13 PMID: 23408569)

    Article  CAS  PubMed  Google Scholar 

  4. Bartley GB, Fatourechi V, Kadrmas EF, Jacobsen SJ, Ilstrup DM, Garrity JA, Gorman CA (1995) The incidence of Graves’ ophthalmopathy in Olmsted County. Minnesota Am J Ophthalmol 120(4):511–517. https://doi.org/10.1016/s0002-9394(14)72666-2. (PMID: 7573310)

    Article  CAS  PubMed  Google Scholar 

  5. Yanik B, Conkbayir I, Acaroglu G, Hekimoglu B (2005) Graves’ ophthalmopathy: comparison of the Doppler sonography parameters with the clinical activity score. J Clin Ultrasound 33(8):375–380. https://doi.org/10.1002/jcu.20154. (PMID: 16240428)

    Article  PubMed  Google Scholar 

  6. Alp MN, Ozgen A, Can I, Cakar P, Gunalp I (2000) Colour Doppler imaging of the orbital vasculature in Graves’ disease with computed tomographic correlation. Br J Ophthalmol 84(9):1027–1030. https://doi.org/10.1136/bjo.84.9.1027.PMID:10966959;PMCID:PMC1723625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pérez-López M, Sales-Sanz M, Rebolleda G, Casas-Llera P, González-Gordaliza C, Jarrín E, Muñoz-Negrete FJ (2011) Retrobulbar ocular blood flow changes after orbital decompression in Graves’ ophthalmopathy measured by color Doppler imaging. Invest Ophthalmol Vis Sci 52(8):5612–5617. https://doi.org/10.1167/iovs.10-6907. (PMID: 21498614)

    Article  PubMed  Google Scholar 

  8. Alford EL, Soparkar CNS (2013) Management of the ‘tight orbit’ and associated visual loss. Curr Opin Otolaryngol Head Neck Surg 21(4):417–422. https://doi.org/10.1097/MOO.0b013e32836312a1. (PMID: 23838551)

    Article  PubMed  Google Scholar 

  9. Jorge R, Scott IU, Akaishi PM, Velasco Cruz AA, Flynn HW Jr (2003) Resolution of choroidal folds and improvement in visual acuity after orbital decompression for graves orbitopathy. Retina 23(4):563–565. https://doi.org/10.1097/00006982-200308000-00025. (PMID: 12972777)

    Article  PubMed  Google Scholar 

  10. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55. https://doi.org/10.1016/j.preteyeres.2017.11.003. (Epub 2017 Dec 8. PMID: 29229445; PMCID: PMC6404988)

    Article  PubMed  Google Scholar 

  11. Sambhav K, Grover S, Chalam KV (2017) The application of optical coherence tomography angiography in retinal diseases. Surv Ophthalmol 62:838–866. https://doi.org/10.1016/j.survophthal.2017.05.006. (Epub 2017 Jun 1 PMID: 28579550)

    Article  PubMed  Google Scholar 

  12. Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133(1):45–50. https://doi.org/10.1001/jamaophthalmol.2014.3616. (PMID: 25317632)

    Article  PubMed  Google Scholar 

  13. Mo S, Krawitz B, Efstathiadis E, Geyman L, Weitz R, Chui TY et al (2016) Imaging foveal microvasculature: optical coherence tomography angiography versus adaptive optics scanning light ophthalmoscope fluorescein angiography. Invest Ophthalmol Vis Sci 57(9):130–140. https://doi.org/10.1167/iovs.15-18932. (PMID:27409463;PMCID:PMC4968918)

    Article  CAS  Google Scholar 

  14. Bartalena L, Baldeschi L, Boboridis K, Eckstein A, Kahaly GJ, Marcocci C et al (2016) European Group on Graves’ Orbitopathy (EUGOGO) The 2016 European Thyroid Association/European Group on Graves’ Orbitopathy Guidelines for the Management of Graves’ Orbitopathy. Eur Thyroid J. 5(1):9–26. https://doi.org/10.1159/000443828. (Epub 2016 Mar 2. PMID: 27099835; PMCID: PMC4836120)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Wu Z (2015) Research advances on relationship between ocular perfusion pressure fluctuations and glaucoma. Zhonghua Yan Ke Za Zhi 51(6):477–480 (Chinese PMID: 26310124)

    PubMed  Google Scholar 

  16. Massion-Verniory L, Potvin AM (1946) Contribution to the pathogenesis of Leber’s disease; role of the vascular factor. Rev Neurol (Paris). 78:91–102 (PMID: 20994601)

    CAS  PubMed  Google Scholar 

  17. Gattoussi S, Cougnard-Grégoire A, Korobelnik JF, Rougier MB, Delyfer MN, Schweitzer C, Le Goff M, Merle BMJ, Dartigues JF, Delcourt C (2019) Choroidal thickness, vascular factors, and age-related macular degeneration: the alienor Study. Retina 39(1):34–43. https://doi.org/10.1097/IAE.0000000000002237. (PMID: 29975345)

    Article  PubMed  Google Scholar 

  18. Alp MN, Ozgen A, Can I, Cakar P, Gunalp I (2000) Colour Doppler imaging of the orbital vasculature in Graves’ disease with computed tomographic correlation. Br J Ophthalmol 84(9):1027–1030. https://doi.org/10.1136/bjo.84.9.1027. (PMID:10966959;PMCID:PMC1723625)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang X, Huang D, Ai S, Liang X, Zhao J, Fang L (2017) Retinal vessel oxygen saturation and vessel diameter in inactive graves ophthalmopathy. Ophthal Plast Reconstr Surg 33:459–465. https://doi.org/10.1097/IOP.0000000000000826. (PMID: 27893583)

    Article  PubMed  Google Scholar 

  20. Perri P, Campa C, Costagliola C, Incorvaia C, D’Angelo S, Sebastiani A (2007) Increased retinal blood flow in patients with active Graves’ ophthalmopathy. Curr Eye Res 32(11):985–990. https://doi.org/10.1080/02713680701689773. (PMID: 18027174)

    Article  PubMed  Google Scholar 

  21. Kim AY, Rodger DC, Shahidzadeh A, Chu Z, Koulisis N, Burkemper B, Jiang X, Pepple KL, Wang RK, Puliafito CA, Rao NA, Kashani AH (2016) Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol 171:101–112. https://doi.org/10.1016/j.ajo.2016.08.035. (Epub 2016 Sep 2. PMID: 27594138; PMCID: PMC5115969)

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salz DA, de Carlo TE, Adhi M, Moult E, Choi W, Baumal CR, Witkin AJ, Duker JS, Fujimoto JG, Waheed NK (2016) Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol 134(6):644–650. https://doi.org/10.1001/jamaophthalmol.2016.0600. (PMID: 27055248; PMCID: PMC5312730)

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ye L, Zhou SS, Yang WL, Bao J, Jiang N, Min YL, Yuan Q, Tan G, Shen M, Shao Y (2018) Retinal microvasculature alteration in active thyroid-associated ophthalmopathy. Endocr Pract 24(7):658–667. https://doi.org/10.4158/EP-2017-0229. (PMID: 30048168)

    Article  PubMed  Google Scholar 

  24. Yu L, Jiao Q, Cheng Y, Zhu Y, Lin Z, Shen X (2020) Evaluation of retinal and choroidal variations in thyroid-associated ophthalmopathy using optical coherence tomography angiography. BMC Ophthalmol 20(1):421. https://doi.org/10.1186/s12886-020-01692-7. (PMID: 33081749; PMCID: PMC7576755)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jamshidian Tehrani M, Mahdizad Z, Kasaei A, Fard MA (2019) Early macular and peripapillary vasculature dropout in active thyroid eye disease. Graefes Arch Clin Exp Ophthalmol 257(11):2533–2540. https://doi.org/10.1007/s00417-019-04442-8. (Epub 2019 Aug 23 PMID: 31444554)

    Article  PubMed  Google Scholar 

  26. Mihailovic N, Lahme L, Rosenberger F, Hirscheider M, Termühlen J, Heiduschka P, Grenzebach U, Eter N, Alnawaiseh M (2020) Altered retinal perfusion in patients with inactive graves ophthalmopathy using optical coherence tomography angiography. Endocr Pract 26(3):312–317. https://doi.org/10.4158/EP-2019-0328. (Epub 2019 Dec 20 PMID: 31859550)

    Article  PubMed  Google Scholar 

  27. Wu Y, Tu Y, Bao L, Wu C, Zheng J, Wang J, Lu F, Shen M, Chen Q (2020) Reduced retinal microvascular density related to activity status and serum antibodies in patients with Graves’ Ophthalmopathy. Curr Eye Res 45(5):576–584. https://doi.org/10.1080/02713683.2019.1675177. (Epub 2019 Oct 9 PMID: 31595798)

    Article  PubMed  Google Scholar 

  28. Blum Meirovitch S, Leibovitch I, Kesler A, Varssano D, Rosenblatt A, Neudorfer M (2017) Retina and nerve fiber layer thickness in eyes with thyroid-associated ophthalmopathy. Isr Med Assoc J 19(5):277–281 (PMID: 28513113)

    PubMed  Google Scholar 

  29. Mugdha K, Kaur A, Sinha N, Saxena S (2016) Evaluation of retinal nerve fiber layer thickness profile in thyroid ophthalmopathy without optic nerve dysfunction. Int J Ophthalmol 9(11):1634–1637. https://doi.org/10.18240/ijo.2016.11.16. (PMID: 27990368; PMCID: PMC5145093)

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dave TV, Laghmisetty S, Krishnamurthy G, Bejjanki K, Ganguly A, Jonnadula GB, Dave VP, Reddy PR (2022) Retinal vascularity, nerve fiber, and ganglion cell layer thickness in thyroid eye disease on optical coherence tomography angiography. Orbit 41(2):170–177. https://doi.org/10.1080/01676830.2020.1846761. (Epub 2020 Nov 17 PMID: 33198545)

    Article  PubMed  Google Scholar 

  31. Zhang T, Xiao W, Ye H, Chen R, Mao Y, Yang H (2019) Peripapillary and macular vessel density in dysthyroid optic neuropathy: an optical coherence tomography angiography study. Invest Ophthalmol Vis Sci 60(6):1863–1869. https://doi.org/10.1167/iovs.18-25941. (PMID: 31042792)

    Article  PubMed  Google Scholar 

  32. Chen CL, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudumbai RC, Johnstone MA, Chen PP, Wang RK (2017) Peripapillary retinal nerve fiber layer vascular microcirculation in eyes with glaucoma and single-hemifield visual field loss. JAMA Ophthalmol 135(5):461–468. https://doi.org/10.1001/jamaophthalmol.2017.0261. (PMID:28358939;PMCID:PMC5847107)

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shoji T, Zangwill LM, Akagi T, Saunders LJ, Yarmohammadi A, Manalastas PIC, Penteado RC, Weinreb RN (2017) Progressive macula vessel density loss in primary open-angle glaucoma: a longitudinal study. Am J Ophthalmol 182:107–117. https://doi.org/10.1016/j.ajo.2017.07.011. (Epub 2017 PMID: 28734815; PMCID: PMC5610624)

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yarmohammadi A, Zangwill LM, Diniz-Filho A, Saunders LJ, Suh MH, Wu Z, Manalastas PIC, Akagi T, Medeiros FA, Weinreb RN (2017) Peripapillary and macular vessel density in patients with glaucoma and single-hemifield visual field defect. Ophthalmology 124(5):709–719. https://doi.org/10.1016/j.ophtha.2017.01.004. (Epub 2017 PMID: 28196732; PMCID: PMC5499385)

    Article  PubMed  Google Scholar 

  35. Yarmohammadi A, Zangwill LM, Manalastas PIC, Fuller NJ, Diniz-Filho A, Saunders LJ, Suh MH, Hasenstab K, Weinreb RN (2018) Peripapillary and macular vessel density in patients with primary open-angle glaucoma and unilateral visual field loss. Ophthalmology 125(4):578–587. https://doi.org/10.1016/j.ophtha.2017.10.029. (Epub 2017 PMID: 29174012; PMCID: PMC5866192)

    Article  PubMed  Google Scholar 

  36. Casini G, Marinò M, Rubino M, Licari S, Covello G, Mazzi B, Ionni I, Rocchi R, Sframeli AT, Figus M, Loiudice P (2020) Retinal, choroidal and optic disc analysis in patients with Graves’ disease with or without orbitopathy. Int Ophthalmol 40(9):2129–2137. https://doi.org/10.1007/s10792-020-01392-7. (Epub 2020 PMID: 32358735)

    Article  PubMed  Google Scholar 

  37. Tan K-A, Gupta P, Agarwal A et al (2016) State of science: choroidal thickness and systemic health. Surv Ophthalmol 61(5):566–581

    Article  PubMed  Google Scholar 

  38. Nickla DL, Wildsoet C, Wallman J (1998) Visual influences on diurnal rhythms in ocular length and choroidal thickness in chick eyes. Exp Eye Res 66:163–181

    Article  CAS  PubMed  Google Scholar 

  39. Papastergiou GI, Schmid GF, Riva CE, Mendel MJ, Stone RA, Laties AM (1998) Ocular axial length and choroidal thickness in newly hatched chicks and one-year-old chickens fluctuate in a diurnal pattern that is influenced by visual experience and intraocular pressure changes. Exp Eye Res 66:195–205

    Article  CAS  PubMed  Google Scholar 

  40. Akay F, Gundogan FC, Yolcu U et al (2016) Choroidal thickness in systemic arterial hypertension. Eur J Ophthalmol 26(2):152–157

    Article  PubMed  Google Scholar 

  41. Ahn SJ, Woo SJ, Park KH (2014) Retinal and choroidal changes with severe hypertension and their association with visual outcome. Invest Ophthalmol Vis Sci 55:7775–7785

    Article  PubMed  Google Scholar 

  42. Özkan B, Kocer CA, Altintas Ö, Karabas L, Acar AZ, Yüksel N (2016) Choroidal changes observed with enhanced depth imaging optical coherence tomography in patients with mild Graves orbitopathy. Eye (Lond) 30:917–924. https://doi.org/10.1038/eye.2016.93. (Epub 2016 Jun 17. PMID: 27315349; PMCID: PMC4941080)

    Article  PubMed  Google Scholar 

  43. Çalışkan S, Acar M, Gürdal C (2017) Choroidal thickness in patients with Graves’ ophthalmopathy. Curr Eye Res 42(3):484–490. https://doi.org/10.1080/02713683.2016.1198488. (Epub 2016 Jul 15 PMID: 27419847)

    Article  PubMed  Google Scholar 

  44. Jonas JB, Nguyen XN, Naumann GO (1989) Parapapillary retinal vessel diameter in normal and glaucoma eyes I. Morphometric data. Invest Ophthalmol Vis Sci 30:1599–1603

    CAS  PubMed  Google Scholar 

  45. Chung HS, Harris A, Halter PJ et al (1999) Regional differences in retinal vascular reactivity. Invest Ophthalmol Vis Sci 40(10):2448–2453

    CAS  PubMed  Google Scholar 

  46. Nakase Y, Osanai T, Yoshikawa K, Inoue Y (1994) Color Doppler imaging of orbital venous flow in dysthyroid optic neuropathy. Jpn J Ophthalmol 38:80–86 (PMID: 7933702)

    CAS  PubMed  Google Scholar 

  47. Bonnin S, Mane V, Couturier A et al (2015) New insight into the macular deep vascular plexus imaged by optical coherence tomography angiography. Retina 35:2347–2352

    Article  PubMed  Google Scholar 

  48. Genevois O, Paques M, Simonutti M et al (2004) Microvascular remodeling after occlusion-recanalization of a branch retinal vein in rats. Invest Ophthalmol Vis Sci 45:594–600

    Article  PubMed  Google Scholar 

  49. Wickremasinghe SS, Rogers SL, Gillies MC, Zhu M, Wong TY (2008) Retinal vascular caliber changes after intravitreal triamcinolone treatment for diabetic macular edema. Invest Ophthalmol Vis Sci 49(11):4707–4711. https://doi.org/10.1167/iovs.08-1678. (Epub 2008 Jul 3 PMID: 18599569)

    Article  PubMed  Google Scholar 

  50. Wickremasinghe SS, Fraser-Bell S, Alessandrello E, Mehta H, Gillies MC, Lim LL (2017) Retinal vascular calibre changes after intravitreal bevacizumab or dexamethasone implant treatment for diabetic macular oedema. Br J Ophthalmol 101(10):1329–1333. https://doi.org/10.1136/bjophthalmol-2016-309882. (Epub 2017 Feb 22 PMID: 28228411)

    Article  PubMed  Google Scholar 

  51. Acaroğlu G, Simşek T, Ozalp S, Mutluay A (2003) Subclinical optic neuropathy in Graves’ orbitopathy. Jpn J Ophthalmol 47:459–462. https://doi.org/10.1016/s0021-5155(03)00101-1. (PMID: 12967860)

    Article  PubMed  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

İzlem Yildiz wrote the main manuscript, İzlem Yildiz and Senay Asik Nacaroglu prepared tables. All authors reviewed the manuscript.

Corresponding author

Correspondence to Izlem Yildiz.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. There was no public or private financial support.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, I., Asik Nacaroglu, S., Ozturk Karabulut, G. et al. Comparison of macular and optic disc vessel density in thyroid orbitopathy: a comparative octa study. Int Ophthalmol 44, 178 (2024). https://doi.org/10.1007/s10792-024-03114-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03114-9

Keywords

Navigation