Skip to main content
Log in

The influencer effect of Dexmedetomidine on radioiodine relevant to lacrimal gland impairment

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To assess the potential influencing effects of Dexmedetomidine on impaired lacrimal glands after high-dose radioiodine treatment (RAI).

Methods

Thirty-six rats were arbitrarily separated into 3 groups: Sham, RAI, and Dexmedetomidine. Dexmedetomidine group was given Dexmedetomidine and RAI, the Sham group was given the same millimeters of saline, and the RAI group was given RAI only. All forms of lacrimal glands, including harderian glands (HG), extraorbital (EG), and intraorbital (IG) lacrimal glands, were evaluated for immunohistochemical, histopathologic assessments and also for tissue cytokines, oxidant and antioxidant levels.

Results

Dexmedetomidine significantly ameliorated histopathologic changes such as periacinar fibrosis, acinar atrophy, lymphocytic infiltration, ductal proliferation, lipofuscin-like accumulation, and nucleus changes caused by RAI in all lacrimal gland forms (p < 0.05 for all of the parameters). However, periductal fibrosis was improved significantly only in EG (p = 0.049), and mast cell infiltration was improved significantly only in IG (p = 0.038) in Dexmedetomidine groups. There was a significant decrease in the elevated caspase-3 and TUNEL levels after RAI administration in the Dexmedetomidine group in all lacrimal gland forms (p < 0.05 for all parameters). Dexmedetomidine attenuated NF-kb, TNF-α, and IL-6 levels significantly diminished total oxidant status and raised total antioxidant status levels (p < 0.05 for all parameters).

Conclusions

The results of this study demonstrated that following RAI, Dexmedetomidine diminished inflammation, tissue cytokine levels, and apoptosis and ameliorated impaired histopathologic patterns of the lacrimal glands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee SL (2012) Radioactive iodine therapy. Curr Opin Endocrinol Diabetes Obes 19:420–428

    Article  CAS  PubMed  Google Scholar 

  2. Spitzweg C, Joba W, Schriever K et al (1999) Analysis of human sodium iodide symporter immunoreactivity in human exocrine glands. J Clin Endocrinol Metab 84:4178–4184

    CAS  PubMed  Google Scholar 

  3. Bakheet SM, Hammami MM, Hemidan A et al (1998) Radioiodine secretion in tears. J Nucl Med 39:1452–1454

    CAS  PubMed  Google Scholar 

  4. Solans R, Bosch JA, Galofré P et al (2001) Salivary and lacrimal gland disfunction (sicca syndrome) after radioiodine therapy. J Nuc Med 42:738–743

    CAS  Google Scholar 

  5. Sakahara H, Yamashita S, Suzuki K et al (2007) Visualization of nasolacrimal drainage system after radioiodine therapy in patients with thyroid cancer. Ann Nucl Med 21:525–527

    Article  PubMed  Google Scholar 

  6. Kloos RT, Duvuuri V, Jhiang SM et al (2002) Nasolacrimal drainage system obstruction from radioactive iodine therapy for thyroid carcinoma. J Clin Endocrinol Metab 87:5817–5820

    Article  CAS  PubMed  Google Scholar 

  7. Zettinig G, Hanselmayer G, Fueger BJ et al (2002) Long-term impairment of the lacrimal glands after radioiodine therapy: a crosssectional study. Eur J Nucl Med Mol Imaging 29:1428–1432

    Article  CAS  PubMed  Google Scholar 

  8. Bonnema SJ, Hegedüs L (2012) Radioiodine therapy in benign thyroid diseases: effects, side effects, and factors affecting therapeutic outcome. Endocr Rev 33(6):920–980

    Article  CAS  PubMed  Google Scholar 

  9. Koca G, Acar U, Atilgan HI et al (2013) Changes in conjunctival cytology and tear function tests with radioiodine treatment for hyperthyroidism. Ann Nucl Med 27:694–699

    Article  CAS  PubMed  Google Scholar 

  10. Dardalas I, Stamoula E, Rigopoulos P et al (2019) Dexmedetomidine effects in different experimental sepsis in vivo models. Eur J Pharmacol 856:172401

    Article  CAS  PubMed  Google Scholar 

  11. Kismet K, Sadic M, Bag YM, et al. (2016) Hepatoprotective effect of Dexmedetomidine against radioiodine toxicity in rats: evaluation of oxidative status and histopathological changes. Int Surg

  12. Liang H, Liu HZ, Wang HB et al (2017) Dexmedetomidine protects against cisplatin-induced acute kidney injury in mice through regulating apoptosis and inflammation. Inflamm Res 66(5):399–411

    Article  CAS  PubMed  Google Scholar 

  13. Smith TA, Kirkpatrick DR, Smith S et al (2017) Radioprotective agents to prevent cellular damage due to ionizing radiation. J Transl Med 15(1):232

    Article  PubMed  PubMed Central  Google Scholar 

  14. Engelhard K, Werner C, Eberspächer E et al (2003) The effect of the alpha 2-agonist Dexmedetomidine and the N-methyl-D-aspartate antagonist S(+)-ketamine on the expression of apoptosis-regulating proteins after incomplete cerebral ischemia and reperfusion in rats. Anesth Analg 96(2):524–531

    CAS  PubMed  Google Scholar 

  15. Çınar S, Tümkaya L, Mercantepe T et al (2021) Can Dexmedetomidine be effective in the protection of radiotherapy-induced brain damage in the rat? Neurotox Res 39(4):1338–1351

    Article  PubMed  Google Scholar 

  16. Kucuk A, Yaylak F, Cavunt-Bayraktar A et al (2014) The protective effects of Dexmedetomidine on hepatic ischemia reperfusion injury. Bratisl Lek Listy 115(11):680–684

    CAS  PubMed  Google Scholar 

  17. Kuru S, Barlas AM, Bozkirli B et al (2014) The protective effects of Dexmedetomidine on the liver against obstructive jaundice in rats. Acta Medica Mediterranea 30:1255–1262

    Google Scholar 

  18. Wang H, Hu B, Zou Y et al (2014) Dexmedetomidine premedication attenuates concanavalin A-induced hepatitis in mice. J Toxicol Sci 39(5):755–764

    Article  CAS  PubMed  Google Scholar 

  19. Damato BE, Allan D, Murray SB, Lee WR (1984) Senile atrophy of the human lacrimal gland: the contribution of chronic inflammatory disease. Br J Ophthalmol 68(9):674–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rios JD, Horikawa Y, Chen LL et al (2005) Age-dependent alterations in mouse exorbital lacrimal gland structure, innervation and secretory response. Exp Eye Res 80(4):477–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Koca G, Singar E, Akbulut A et al (2021) The effect of resveratrol on radioiodine therapy-associated lacrimal gland damage. Curr Eye Res 46(3):398–407

    Article  CAS  PubMed  Google Scholar 

  22. Erel O (2004) A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clin Biochem 37(4):277–285

    Article  CAS  PubMed  Google Scholar 

  23. Erel O (2005) A new automated colorimetric method for measuring total oxidand status. Clin Biochem 38(12):1103–1111

    Article  CAS  PubMed  Google Scholar 

  24. Citrin D, Cotrim AP, Hyodo F et al (2010) Radioprotectors and mitigators of radiation-induced normal tissue injury. Oncologist 15(4):360–371

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li C, Wright MM, Jackson RM (2002) Reactive species mediated injury of human lung epithelial cells after hypoxia-reoxygenation. Exp Lung Res 28(5):373–389

    Article  PubMed  Google Scholar 

  26. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312(3):159–163

    Article  CAS  PubMed  Google Scholar 

  27. Naziroğlu M, Simşek M, Kutlu M (2004) Moderate exercise with a dietary vitamin C and E combination protects against streptozotocin-induced oxidative damage to the blood and improves fetal outcomes in pregnant rats. Clin Chem Lab Med 42(5):511–517

    Article  PubMed  Google Scholar 

  28. Eren L, Naziroglu M, Demirdas A (2007) Protectice effects of lamotrigine, aripiprazole and escitalopramon depression­ induced oxidative stress in ratbrain. Neurochem Res 32(7):1188–1195

    Article  CAS  PubMed  Google Scholar 

  29. Baysal Z, Togrul T, Aksoy N et al (2009) Evaluation of total oxidative and antioxidative status in pediatric patients undergoing laparoscopic surgery. J Pediatr Surg 44(7):1367–1370

    Article  PubMed  Google Scholar 

  30. Jones BM, Kwok CC, Kung AW (1999) Effect of radioactive iodine therapy on cytokine production in Graves’ disease: transient increases in interleukin-4 (IL-4), IL-6, IL-10, and tumor necrosis factor-alpha, with longer term increases in interferon-gamma production. J Clin Endocrinol Metab 84:4106–4110

    CAS  PubMed  Google Scholar 

  31. Williams RM, Singh J, Sharkey KA (1994) Innervation and mast cells of the rat exorbital lacrimal gland: the effect of age. J Auton Nerv Syst 47:95–108

    Article  CAS  PubMed  Google Scholar 

  32. Burd PR, Rogers HW, Gordon JR et al (1989) Interleukin 3-dependent and -independent mast cells stimulated with IgE and antigen express multiple cytokines. J Exp Med 170:245–257

    Article  CAS  PubMed  Google Scholar 

  33. Gordon JR, Galli SJ (1990) Mast cells as a source of both preformed and immunologically inducible TNFalpha/cachectin. Nature 346:274–276

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med. 174:103–107

    Article  CAS  PubMed  Google Scholar 

  35. Jaatinen P, Koistinaho J, Hervonen A (1989) Age-related morphometric and histochemical features of rat sympathetic neurons. Adv Exp Med Biol 266:61–72

    CAS  PubMed  Google Scholar 

  36. Cuervo AM, Dice JF (2000) When lysosomes get old. Exp Gerontol 35:119–131

    Article  CAS  PubMed  Google Scholar 

  37. Cekic B, Geze S, Ozkan G et al (2014) The effect of Dexmedetomidine on oxidative stress during pneumoperitoneum. Biomed Res Int 2014:760323

    Article  PubMed  PubMed Central  Google Scholar 

  38. Shalini S, Dorstyn L, Dawar S et al (2015) Old, new and emerging functions of caspases. Cell Death Differ 22:526–539

    Article  CAS  PubMed  Google Scholar 

  39. Pordanjani SM, Hosseinimehr SJ (2016) The role of NF-kb inhibitors in cell response to radiation. Curr Med Chem 23(34):3951–3963

    Article  CAS  PubMed  Google Scholar 

  40. Yumusak N, Sadic M, Yucel G et al (2018) Apoptosis and cell proliferation in short-term and long-term effects of radioiodine-131-induced kidney damage: an experimental and immunohistochemical study. Nucl Med Commun 39(2):131–139

    Article  CAS  PubMed  Google Scholar 

  41. Kluck RM, Bossy-Wetzel E, Green DR et al (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  CAS  PubMed  Google Scholar 

  42. Yang J, Liu X, Bhalla K et al (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132

    Article  CAS  PubMed  Google Scholar 

  43. Fan Y, Chiu JF, Liu J et al (2018) Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer 18(1):581

    Article  PubMed  PubMed Central  Google Scholar 

  44. Susin SA, Zamzami N, Castedo M et al (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341

    Article  CAS  PubMed  Google Scholar 

  45. Xiang J, Chao DT, Korsmeyer SJ (1996) BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. Proc Natl Acad Sci U S A 93(25):14559–14563

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Declared none.

Author information

Authors and Affiliations

Authors

Contributions

Singar, Akbulut wrote the main manuscript; Yazıhan, Yumusak and Demir prepared figures; Singar, Koca, Korkmaz, Burcu and Atılgan prepared the study, all authors reviewed the manuscript.

Corresponding author

Correspondence to Evin Şingar.

Ethics declarations

Compliance with ethical standards

All procedures on animals were carried out by the Animal Ethics Committee. The Laboratory Animal Care Committee of the University of Health Sciences Ankara Training and Research Hospital reviewed and approved the experimental protocol (Report no:19.03.2020/609).

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şingar, E., Akbulut, A., Koca, G. et al. The influencer effect of Dexmedetomidine on radioiodine relevant to lacrimal gland impairment. Int Ophthalmol 44, 115 (2024). https://doi.org/10.1007/s10792-024-03052-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10792-024-03052-6

Keywords

Navigation