Skip to main content

Advertisement

Log in

GSDMD-mediated pyroptosis in retinal vascular inflammatory diseases: a review

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Pyroptosis is a newly discovered form of programmed pro-inflammatory cell death. The main signaling pathways include the classical scorch death pathway that depends on NLRP3 inflammatory vesicles and other activation caspase-1 and the non-classical scorch death pathway that depends on caspase-4 /5/11. The substrate of all inflammatory caspases is GSDMD; a large number of studies have confirmed that pyroptosis is associated with certain infectious diseases, atherosclerotic diseases, metabolic diseases, and aseptic inflammatory diseases of important organs. In recent years, pyroptosis has been studied partially in the ocular field. So, this article reviews the recent literature intending to help readers understand the main mechanisms of cellular scorch death and the progress of GSDMD-mediated cellular scorch death in retinal vascular inflammatory diseases.

Method

A detailed review of the literature related to pyroptosis and inflammatory diseases of the retinal vasculature is presented. The following 6 electronic databases were searched: CNKI, Wanfang, VIP, PubMed, The Cochrane Library, and Embase Databases, and the search period was from the database to May 2022. The main search keywords include “Pyroptosis,” “ GSDMD,” “Retinal Vascular Inflammatory Disease,” “Diabetic retinopathy,” “Retinal vasculitis.” The discovery of pyroptosis, the main molecular mechanisms, key proteins, and their pathogenesis and therapeutic prospects in retinal vasculitis diseases are extensively studied and summarized.

Result

The mechanisms of gasdermin D-mediated pyroptosis are elaborated and analyzed, with particular emphasis on their key role and potential in the pathogenesis and treatment of inflammatory retinal vascular lesions.

Conclusion

Gasdermin D-mediated pyroptosis is a well-studied form of programmed pro-inflammatory cell death, which has a bidirectional regulatory effect on a variety of immune and inflammatory diseases. The literature reveals that pyroptosis is closely related to the pathogenesis of retinal vascular inflammatory diseases, and it may be an important therapeutic target for diabetic retinopathy and other retinal vasculitis eye diseases in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cookson B, Brennan M (2001) Pro-inflammatory programmed cell death. Trends Microbiol 9(3):113–114

    Article  CAS  PubMed  Google Scholar 

  2. Vande Walle L, Lamkanfi, (2016) Pyroptosis. Curr Bio 26(13):R568–R572

    Article  CAS  Google Scholar 

  3. Ross C, Chan A, von Pein J et al (2022) Inflammatory Caspases: Toward a Unified Model for Caspase Activation by Inflammasomes. Annu Rev Immunol 40:249–269

    Article  PubMed  Google Scholar 

  4. Shi J, Zhao Y, Wang K et al (2015) Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526(7575):660–665

    Article  CAS  PubMed  Google Scholar 

  5. Kesavardhana S, Malireddi R, Kanneganti TJAroi, (2020) Caspases in Cell Death, Inflammation, and Pyroptosis. Annu Rev Immunol 38:567–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rumpret Matevž, von Richthofen Helen J, Peperzak Victor et al (2022) Inhibitory pattern recognition receptors. J Experimet Med. https://doi.org/10.1084/jem.20211463

    Article  Google Scholar 

  7. Horvath G L, Schrum J E, De Nardo C M et al (2011) Intracellular sensing of microbes and danger signals by the inflammasomes: Inflammasome activation in inflammation. Immunological Reviews 243(1):119–135. https://doi.org/10.1111/j.1600-065X.2011.01050.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu F, Lan Z, Xin Z et al (2020) Emerging insights into molecular mechanisms underlying pyroptosis and functions of inflammasomes in diseases. J Cell Physiol 235(4):3207–3221

    Article  CAS  PubMed  Google Scholar 

  9. Man S M, Karki R, Kanneganti T-Devi (2017) Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 277(1):61–75. https://doi.org/10.1111/imr.12534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, He W, Hu L et al (2016) Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res 26(9):1007–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kayagaki N, Wong M, Stowe I et al (2013) Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341(6151):1246–1249

    Article  CAS  PubMed  Google Scholar 

  12. Qiu S, Liu J, Xing F (2017) “Hints” in the killer protein gasdermin D: unveiling the secrets of gasdermins driving cell death. Cell death differs 24(4):588–596

    Article  CAS  Google Scholar 

  13. Feng Shouya, Fox Daniel, Man Si Ming (2018) Mechanisms of Gasdermin Family Members in Inflammasome Signaling and Cell Death. J Molecul Biol 430(18):3068–3080. https://doi.org/10.1016/j.jmb.2018.07.002

    Article  CAS  Google Scholar 

  14. Xia S (2020) Biological mechanisms and therapeutic relevance of the gasdermin family. Mol Aspects Med 76:100890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Broz P (2015) Immunology: Caspase target drives pyroptosis. Nature 526(7575):642–643

    Article  CAS  PubMed  Google Scholar 

  16. Saeki N, Usui T, Aoyagi K et al (2009) Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes chromosomes cancer 48(3):261–271

    Article  CAS  PubMed  Google Scholar 

  17. Burgener S, Leborgne N, Snipas S et al (2019) Cathepsin G Inhibition by Serpinb1 and Serpinb6 Prevents Programmed Necrosis in Neutrophils and Monocytes and Reduces GSDMD-Driven Inflammation. Cell Rep 27(12):3646-3656.e3645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kambara H, Liu F, Zhang X et al (2018) Gasdermin D Exerts Anti-inflammatory Effects by Promoting Neutrophil Death. Cell Rep 22(11):2924–2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xi G, Gao J, Wan B et al (2019) GSDMD is required for effector CD8 T cell responses to lung cancer cells. Int Immunopharmacol 74:105713

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Zhang Z, Ruan J et al (2016) Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535(7610):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu Z, Wang C, Rathkey J et al (2018) Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition. Structure 26(5):778-784.e773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Z, Wang C, Yang J et al (2019) Crystal Structures of the Full-Length Murine and Human Gasdermin D Reveal Mechanisms of Autoinhibition, Lipid Binding, and Oligomerization. Immunity 51(1):43-49.e44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ding J, Wang K, Liu W et al (2016) Erratum: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 540(7631):150

    Article  CAS  PubMed  Google Scholar 

  24. Teng Jin-Feng, Mei Qi-Bing, Zhou Xiao-Gang et al (2020) Polyphyllin VI Induces Caspase-1-Mediated Pyroptosis via the Induction of ROS/NF-κB/NLRP3/GSDMD Signal Axis in Non-Small Cell Lung Cancer. Cancers 12(1):193. https://doi.org/10.3390/cancers12010193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rathkey J, Zhao J, Liu Z, et al (2018) Chemical disruption of the pyroptotic pore-forming protein gasdermin D inhibits inflammatory cell death and sepsis. Sci Immunol, 3(26).

  26. Bansal N, Sciabola S, Bhisetti G (2019) Understanding allosteric interactions in hMLKL protein that modulate necroptosis and its inhibition. Sci Rep 9(1):16853

    Article  PubMed  PubMed Central  Google Scholar 

  27. Feenstra D, Yego E, Mohr S (2013) Modes of Retinal Cell Death in Diabetic Retinopathy. J Clin Exp Ophthalmol 4(5):298

    PubMed  PubMed Central  Google Scholar 

  28. Petersen L, Bek T (2019) The Oxygen Saturation in Vascular Abnormalities Depends on the Extent of Arteriovenous Shunting in Diabetic Retinopathy. Invest Ophthalmol Vis Sci 60(12):3762–3767

    Article  CAS  PubMed  Google Scholar 

  29. Simó R, Hernández C, (2014) Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives .Trends Endocrinol Metab , 25(1):23–33.

  30. Ferrington DA, Fisher CR, Kowluru RA (2020) Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends Mol Med 26(1):105–118

    Article  PubMed  Google Scholar 

  31. Chai G, Liu S, Yang H et al (2020) NLRP3 Blockade Suppresses Pro-Inflammatory and Pro-Angiogenic Cytokine Secretion in Diabetic Retinopathy. Diabetes, metabolic syndrome, and obesity: targets and therapy 13:3047–3058

    Article  CAS  PubMed  Google Scholar 

  32. Loukovaara S, Piippo N, Kinnunen K et al (2017) NLRP3 inflammasome activation is associated with proliferative diabetic retinopathy. Acta Ophthalmol 95(8):803–808

    Article  CAS  PubMed  Google Scholar 

  33. Yin Y, Chen F, Wang W et al (2017) Resolvin D1 inhibits inflammatory response in STZ-induced diabetic retinopathy rats: Possible involvement of NLRP3 inflammasome and NF-κB signaling pathway. Mol Vis 23:242–250

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, Lv X, Hu Z et al (2017) Protection of Mcc950 against high-glucose-induced human retinal endothelial cell dysfunction. Cell Death Dis 8(7):e2941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Solini A, Novak I (2019) Role of the P2X7 receptor in the pathogenesis of type 2 diabetes and its microvascular complications. Curr Opin Pharmacol 47:75–81

    Article  CAS  PubMed  Google Scholar 

  36. Lu L, Lu Q, Chen W et al (2018) Vitamin D Protects against Diabetic Retinopathy by Inhibiting High-Glucose-Induced Activation of the ROS/TXNIP/NLRP3 Inflammasome Pathway. J Diabetes Res 2018:8193523

    Article  PubMed  PubMed Central  Google Scholar 

  37. Liu Q, Zhang F, Zhang X et al (2018) Fenofibrate ameliorates diabetic retinopathy by modulating Nrf2 signaling and NLRP3 inflammasome activation. Mol Cell Bio 445:105–115

    CAS  Google Scholar 

  38. Sun H, Jin X, Xu J et al (2020) Baicalin Alleviates Age-Related Macular Degeneration via miR-223/NLRP3-Regulated Pyroptosis. Pharmacol 105:28–38

    Article  CAS  Google Scholar 

  39. Yu X, Ma X, Lin W, et al(2020)Long noncoding RNA MIAT regulates primary human retinal pericyte pyroptosis by modulating miR-342–3p targeting of CASP1 in diabetic retinopathy. Exp Eye Res:108300.

  40. Datoo GA, O’Keefe N R (2021) Retinal vasculitis: A framework and proposal for a classification system. Survey of Ophthalmology 66(1):54–67. https://doi.org/10.1016/j.survophthal.2020.05.004

    Article  Google Scholar 

  41. Rosenbaum J, Sibley C, Lin P (2016) Retinal vasculitis. Cur Opinion. Rheumatol 28(3):228–235

    CAS  Google Scholar 

  42. Sui A, Chen X, Shen J et al (2020) Inhibiting the NLRP3 inflammasome with MCC950 ameliorates retinal neovascularization and leakage by reversing the IL-1β/IL-18 activation pattern in an oxygen-induced ischemic retinopathy mouse model. Cell Death Dis 11(10):901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks go to the corresponding author who provided valuable suggestions for revision of this review.

Funding

LX is funded by the National Nature Science Foundation of China (No. 81473735). The corresponding author is the sponsor who provides for funds.

Author information

Authors and Affiliations

Authors

Contributions

LX contributed to the conception and design of the study, data collection, analysis, interpretation of data, and drafting of the manuscript. Supervision was performed by X-X. All authors contributed to the critical revision of the manuscript for important intellectual content. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Xie Xuejun.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiaodong, L., Xuejun, X. GSDMD-mediated pyroptosis in retinal vascular inflammatory diseases: a review. Int Ophthalmol 43, 1405–1411 (2023). https://doi.org/10.1007/s10792-022-02506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02506-z

Keywords

Navigation