Skip to main content

Advertisement

Log in

Changes in the peripapillary and subfoveal choroidal vascularity index after transsphenoidal surgery for pituitary macroadenoma

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the changes in peripapillary and subfoveal choroidal vascular indexes (CVI) before and after pituitary macroadenoma surgery by using a binarization method.

Method

In this cross-sectional study, we examined 17 eyes in 9 patients with pituitary macroadenomas who had undergone transsphenoidal pituitary surgery due to chiasmal compression. We also compiled data from 17of in 17 healthy subjects. ImageJ 1.51 software processing (National Institutes of Health, Bethesda, Maryland, USA) was used for binarization of optical coherence tomography scans. The CVI was computed as the ratio of luminal area to total choroidal areal. The CVI, OCT and VF parameters were analyzed in One-Way Repeated Measures ANOVA to determine significant changes in measurements during the postoperative course.

Results

The mean peripapillary inferior and temporal quadrant CVIs were significantly lower in the eyes of patients with pituitary macroadenoma compared to controls (46.0 ± 0.03 versus. 42.8 ± 0.04, p = 0.02; 45.8 ± 0.03 Versus. 42.3 ± 0.04, p = 0.02). In repeated measure analysis, there was a significant effect of transsphenoidal microscobic pituitary surgery on peripapillary inferior quadrant CVI and BCVA, F(1.3, 21.5) = 6.62, p = 0.01 and F (1.8, 29.7) = 7.8, p < 0.005, respectively.

Conclusion

This study suggests that PMa with chiasmal compression may lead to significant changes in the peripapillary CVI. Pituitary surgery had a favorable significant effect on peripapillary choroidal vascular network and BCVA. Furthermore, optical coherence tomography is a helpful technique for quantifying the alterations of peripapillary CVI during the preoperative and postoperative course.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data are available upon reasonable request from the authors.

References

  1. Lake MG, Krook LS, Cruz SV (2013) Pituitary adenomas: an overview. Am Fam Physician 88:319–327

    PubMed  Google Scholar 

  2. Ezzat S, Asa SL, Couldwell WT et al (2004) The prevalence of pituitary adenomas: a systematic review. Cancer 101:613–619

    Article  PubMed  Google Scholar 

  3. Fernandez A, Karavitaki N, Wass JAH (2010) Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 72:377–382

    Article  Google Scholar 

  4. Lithgow K, Batra R, Matthews T et al (2019) Management of endocrine disease: visual morbidity in patients with pituitary adenoma. Eur J Endocrinol 181:R185–R197

    Article  CAS  PubMed  Google Scholar 

  5. Danesh-Meyer HV, Wong A, Papchenko T et al (2015) Optical coherence tomography predicts visual outcome for pituitary tumors. J Clin Neurosci 22:1098–1104

    Article  PubMed  Google Scholar 

  6. Tieger MG, Hedges TR 3rd, Ho J et al (2017) Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol 37:7–12

    Article  PubMed  PubMed Central  Google Scholar 

  7. Newman SA, Turbin RE, Bodach ME et al (2016) Congress of neurological surgeons systematic review and evidence-based guideline on pretreatment ophthalmology evaluation in patients with suspected nonfunctioning pituitary adenomas. Neurosurgery 79:E530-532

    Article  PubMed  Google Scholar 

  8. Dallorto L, Lavia C, Jeannerot AL et al (2019) Retinal microvasculature in pituitary adenoma patients: is optical coherence tomography angiography useful? Acta Ophthalmol. https://doi.org/10.1111/aos.14322

    Article  PubMed  Google Scholar 

  9. Cennamo G, Solari D, Montorio D et al (2020) Early vascular modifications after endoscopic endonasal pituitary surgery: the role of OCT-angiography. PLoS ONE 15:e0241295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121:547–557

    Article  PubMed  Google Scholar 

  11. Agrawal R, Ding J, Sen P et al (2020) CVI grid Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retin Eye Res 77:100829

    Article  CAS  PubMed  Google Scholar 

  12. Simsek M, Inam O, Sen E et al (2020) Peripapillary and macular choroidal vascularity index in patients with clinically unilateral pseudoexfoliation syndrome. Eye (Lond) 35:1712–1720

    Article  Google Scholar 

  13. Suh MH, Park JW, Khandelwal N et al (2019) Peripapillary choroidal vascularity index and microstructure of parapapillary atrophy. Invest Ophthalmol Vis Sci 60:3768–3775

    Article  PubMed  Google Scholar 

  14. Singh SR, Rasheed MA, Goud A et al (2019) Diurnal variation in subfoveal and peripapillary choroidal vascularity index in healthy eyes. Indian J Ophthalmol 67:1667–1672

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lee GI, Park K-A, Oh SY et al (2021) Changes in parafoveal and peripapillary perfusion after decompression surgery in chiasmal compression due to pituitary tumors. Sci Rep 11:3464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Agrawal R, Salman M, Tan K-A et al (2016) Choroidal vascularity index (CVI)–a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS ONE 11(1):e0146344

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koo TK, Li MY (2016) A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med 15:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  18. Iovino C, Pellegrini M, Bernabei F et al (2020) (2020) Choroidal vascularity index: an in-depth analysis of this novel optical coherence tomography parameter. J Clin Med 9(2):595

    Article  CAS  PubMed Central  Google Scholar 

  19. Liu B, Zhang X, Mi L, Peng Y et al (2019) Choroidal structure in subtypes of polypoidal choroidal vasculopathy determined by binarization of optical coherence tomographic images. Clin Exp Ophthalmol 47:631–637

    Article  PubMed  Google Scholar 

  20. Kim RY, Chung DH, Kim M et al (2020) Use of choroidal vascularity index for choroidal structural evaluation in central serous chorioretinopathy with choroidal neovascularization. Retina 40:1395–1402

    Article  PubMed  Google Scholar 

  21. Ozcaliskan S, Balci S, Yenerel NM (2020) Choroidal vascularity index determined by binarization of enhanced depth imaging optical coherence tomography images in eyes with intermediate age-related macular degeneration. Eur J Ophthalmol 30:1512–1518

    Article  PubMed  Google Scholar 

  22. Jaisankar D, Raman R, Sharma HR et al (2019) Choroidal and retinal anatomical responses following systemic corticosteroid therapy in Vogt-Koyanagi-Harada disease using swept-source optical coherence tomography. Ocul Immunol Inflamm 27:235–243

    Article  PubMed  Google Scholar 

  23. Pellegrini M, Giannaccare G, Bernabei F et al (2019) Choroidal vascular changes in arteritic and nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol 205:43–49

    Article  PubMed  Google Scholar 

  24. Kesim C, Solmaz B, Pasaoglu I et al (2021) Analysis of the peripapillary choroidal vascular characteristics in papilledema associated with pseudotumor cerebri. Optom Vis Sci 98:326–333

    Article  PubMed  Google Scholar 

  25. Yalcin NG, Aktas Z, Yuce O (2018) Choroidal thickness measurements in children with isolated growth hormone deficiency. Eye (Lond) 32:364–369

    Article  CAS  Google Scholar 

  26. Centofanti M, Bonini S, Manni G et al (2000) (2000) Do sex and hormonal status influence choroidal circulation? Br J Ophthalmol 84(7):786–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Julie Yamamoto for editorial assistance.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasin Özcan.

Ethics declarations

Conflict of interest

The authors have no conflict of interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özcan, Y., Kayıran, A., Kelestimur, F. et al. Changes in the peripapillary and subfoveal choroidal vascularity index after transsphenoidal surgery for pituitary macroadenoma. Int Ophthalmol 42, 3691–3702 (2022). https://doi.org/10.1007/s10792-022-02366-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02366-7

Keywords

Navigation