Skip to main content

Advertisement

Log in

Evaluation of augmentation index and pulse wave velocity measurements in central retinal vein occlusion patients with and without hypertension

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate arterial stiffness using the pulse wave velocity (PWV) and augmentation index (AI) in central retinal vein occlusion (CRVO) patients.

Methods

Forty-two CRVO patients (i.e., CRVO group) and 54 healthy controls (i.e., control group) were included in this comparative and cross-sectional study. The PWV, AI and augmentation pressure were measured with a noninvasive, oscillometric method.

Results

The mean PWV, AI and augmentation pressure values were significantly higher in CRVO patients than in controls (p = 0.024, p < 0.001 and p = 0.001, respectively). The mean augmentation pressure, AI and PWV measurements were not statistically significant between CRVO patients with and without hypertension (p = 0.856 and p < 0.526, p = 0.432, respectively). Age, presence of hypertension, AI and PWV were found to be as independent risk factors of CRVO development (OR = 2.21, 95% CI [1.44, 3.38] and OR = 2.40, 95% CI [1.50, 3.86], OR = 3.2, 95% CI [1.70, 5.60] and OR = 5.70, 95% CI [2.00, 18.50], respectively).

Conclusion

The AI and PWV values were significantly higher in CRVO patients than in controls. These results indicate that similar abnormalities in the arterial wall structure may play an important role in the pathogenesis of the CRVO and cardiovascular diseases. In addition, our findings show that each patient with RVO should be examined in terms of systemic vascular pathologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mitchell P, Smith W, Chang A (1996) Prevalence and associations of retinal vein occlusion in Australia. The blue mountains eye study. Arch Ophthalmol 114:1243–1247. https://doi.org/10.1001/archopht.1996.01100140443012

    Article  CAS  PubMed  Google Scholar 

  2. Klein R, Klein BE, Moss SE, Meuer SM (2000) The epidemiology of retinal vein occlusion: the beaver dam eye study. Trans Am Ophthalmol Soc 98:133–141

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sperduto RD, Hiller R, Chew E, Seigel D, Blair N, Burton TC, Farber MD, Gragoudas ES, Haller J, Seddon JM, Yannuzzi LA (1998) Risk factors for hemiretinal vein occlusion: comparison with risk factors for central and branch retinal vein occlusion: the eye disease case-control study. Ophthalmology 105:765–771. https://doi.org/10.1016/s0161-6420(98)95012-6

    Article  CAS  PubMed  Google Scholar 

  4. Tsaloumas MD, Kirwan J, Vinall H, O’Leary MB, Prior P, Kritzinger EE, Dodson PM (2000) Nine year follow-up study of morbidity and mortality in retinal vein occlusion. Eye (Lond) 14:821–827. https://doi.org/10.1038/eye.2000.230

    Article  CAS  Google Scholar 

  5. Martin SC, Butcher A, Martin N, Farmer J, Dobson PM, Bartlett WA, Jones AF (2002) Cardiovascular risk assessment in patients with retinal vein occlusion. Br J Ophthalmol 86:774–776. https://doi.org/10.1136/bjo.86.7.774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Singh RB, Saini C, Shergill S, Agarwal A (2020) Window to the circulatory system: ocular manifestations of cardiovascular diseases. Eur J Ophthalmol 30:1207–1219. https://doi.org/10.1177/1120672120914232

    Article  PubMed  Google Scholar 

  7. Nakazato K, Watanabe H, Kawana K, Hiraoka T, Kiuchi T, Oshika T (2005) Evaluation of arterial stiffness in patients with branch retinal vein occlusion. Ophthalmologica 219:334–337. https://doi.org/10.1159/000088374

    Article  PubMed  Google Scholar 

  8. Lehmann ED, Hopkins KD, Gosling RG (1996) Assessment of arterial distensibility by automatic pulse wave velocity measurement. Hypertension 27:1188–1191

    CAS  PubMed  Google Scholar 

  9. Dart AM, Kingwell BA (2001) Pulse pressure–a review of mechanisms and clinical relevance. J Am Coll Cardiol 37:975–984. https://doi.org/10.1016/s0735-1097(01)01108-1

    Article  CAS  PubMed  Google Scholar 

  10. Nürnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR, Philipp T, Schäfers RF (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20:2407–2414. https://doi.org/10.1097/00004872-200212000-00020

    Article  PubMed  Google Scholar 

  11. Asmar R, Benetos A, Topouchian J, Laurent P, Pannier B, Brisac AM, Target R, Levy BI (1995) Assessment of arterial distensibility by automatic pulse wave velocity measurement. Validation and clinical application studies. Hypertension 26:485–490. https://doi.org/10.1161/01.hyp.26.3.485

    Article  CAS  Google Scholar 

  12. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18:3s–10s. https://doi.org/10.1016/j.amjhyper.2004.10.009

    Article  PubMed  Google Scholar 

  13. Baulmann J, Schillings U, Rickert S, Uen S, Düsing R, Illyes M, Cziraki A, Nickering G, Mengden T (2008) A new oscillometric method for assessment of arterial stiffness: comparison with tonometric and piezo-electronic methods. J Hypertens 26:523–528. https://doi.org/10.1097/HJH.0b013e3282f314f7

    Article  CAS  PubMed  Google Scholar 

  14. Hodes RJ, Lakatta EG, McNeil CT (1995) Another modifiable risk factor for cardiovascular disease? Some evidence points to arterial stiffness. J Am Geriatr Soc 43:581–582. https://doi.org/10.1111/j.1532-5415.1995.tb06111.x

    Article  CAS  PubMed  Google Scholar 

  15. Laurent S, Boutouyrie P, Asmar R, Gautier I, Laloux B, Guize L, Ducimetiere P, Benetos A (2001) Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 37:1236–1241. https://doi.org/10.1161/01.hyp.37.5.1236

    Article  CAS  PubMed  Google Scholar 

  16. O’Rourke MF, Nichols WW (2005) Aortic diameter, aortic stiffness, and wave reflection increase with age and isolated systolic hypertension. Hypertension 45:652–658. https://doi.org/10.1161/01.HYP.0000153793.84859.b8

    Article  CAS  Google Scholar 

  17. Rothenbuehler SP, Maloca PM, Belmouhand M, Hamann S, Larsen M (2021) Branch retinal vein occlusion precipitated by compression between a major retinal artery and underlying optic disc drusen. Acta Ophthalmol. https://doi.org/10.1111/aos.14840

    Article  PubMed  Google Scholar 

  18. Weinberg D, Dodwell DG, Fern SA (1990) Anatomy of arteriovenous crossings in branch retinal vein occlusion. Am J Ophthalmol 109:298–302

    Article  CAS  Google Scholar 

  19. Liao D, Wong TY, Klein R, Jones D, Hubbard L, Sharrett AR (2004) Relationship between carotid artery stiffness and retinal arteriolar narrowing in healthy middle-aged persons. Stroke 35:837–842. https://doi.org/10.1161/01.str.0000120310.43457.ad

    Article  PubMed  Google Scholar 

  20. Sato E, Feke GT, Appelbaum EY, Menke MN, Trempe CL, McMeel JW (2006) Association between systemic arterial stiffness and age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 244:963–971. https://doi.org/10.1007/s00417-005-0201-6

    Article  PubMed  Google Scholar 

  21. Franssen PM, Imholz BP (2010) Evaluation of the Mobil-O-Graph new generation ABPM device using the ESH criteria. Blood Press Monit 15:229–231. https://doi.org/10.1097/mbp.0b013e328339be38

    Article  PubMed  Google Scholar 

  22. Karpetas A, Sarafidis PA, Georgianos PI, Protogerou A, Vakianis P, Koutroumpas G, Raptis V, Stamatiadis DN, Syrganis C, Liakopoulos V, Efstratiadis G, Lasaridis AN (2015) Ambulatory recording of wave reflections and arterial stiffness during intra- and interdialytic periods in patients treated with dialysis. Clin J Am Soc Nephrol 10:630–638. https://doi.org/10.2215/cjn.08180814

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jadhav UM, Kadam NN (2005) Non-invasive assessment of arterial stiffness by pulse-wave velocity correlates with endothelial dysfunction. Indian Heart J 57:226–232

    PubMed  Google Scholar 

  24. Guo X, Li Y, Yang Y, Wang W, Liang S, Zheng Y, Chen X, Cai G (2021) Noninvasive markers of arterial stiffness and renal outcomes in patients with chronic kidney disease. J Clin Hypertens (Greenwich) 23:823–830. https://doi.org/10.1111/jch.14185

    Article  CAS  Google Scholar 

  25. Haapala EA, Veijalainen A, Kujala UM, Finni T (2019) Reproducibility of pulse wave velocity and augmentation index derived from non-invasive occlusive oscillometric tonometry analysis in adolescents. Clin Physiol Funct Imaging 39:22–28. https://doi.org/10.1111/cpf.12528

    Article  PubMed  Google Scholar 

  26. Hwang MH, Yoo JK, Kim HK, Hwang CL, Mackay K, Hemstreet O, Nichols WW, Christou DD (2014) Validity and reliability of aortic pulse wave velocity and augmentation index determined by the new cuff-based SphygmoCor Xcel. J Hum Hypertens 28:475–481. https://doi.org/10.1038/jhh.2013.144

    Article  CAS  PubMed  Google Scholar 

  27. Wong TY, Larsen EK, Klein R, Mitchell P, Couper DJ, Klein BE, Hubbard LD, Siscovick DS, Sharrett AR (2005) Cardiovascular risk factors for retinal vein occlusion and arteriolar emboli: the atherosclerosis risk in communities & cardiovascular health studies. Ophthalmology 112:540–547. https://doi.org/10.1016/j.ophtha.2004.10.039

    Article  PubMed  Google Scholar 

  28. O’Mahoney PR, Wong DT, Ray JG (2008) Retinal vein occlusion and traditional risk factors for atherosclerosis. Arch Ophthalmol 126:692–699. https://doi.org/10.1001/archopht.126.5.692

    Article  PubMed  Google Scholar 

  29. Frangieh GT, Green WR, Barraquer-Somers E, Finkelstein D (1982) Histopathologic study of nine branch retinal vein occlusions. Arch Ophthalmol 100:1132–1140. https://doi.org/10.1001/archopht.1982.01030040110020

    Article  CAS  PubMed  Google Scholar 

  30. Ogawa O, Onuma T, Uchino H, Takayanagi Y, Tanaka Y, Yamasaki Y, Atsumi Y, Matsuoka K, Kawamori R (2003) Insulin resistance and atherosclerosis in branch retinal vein occlusion. Jpn J Ophthalmol 47:351–355. https://doi.org/10.1016/s0021-5155(03)00059-5

    Article  CAS  PubMed  Google Scholar 

  31. Arnett DK, Evans GW, Riley WA (1994) Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol 140:669–682. https://doi.org/10.1093/oxfordjournals.aje.a117315

    Article  CAS  PubMed  Google Scholar 

  32. O’Rourke MF, Kelly RP (1993) Wave reflection in the systemic circulation and its implications in ventricular function. J Hypertens 11:327–337. https://doi.org/10.1097/00004872-199304000-00001

    Article  CAS  PubMed  Google Scholar 

  33. Chirinos JA, Zambrano JP, Chakko S, Veerani A, Schob A, Willens HJ, Perez G, Mendez AJ (2005) Aortic pressure augmentation predicts adverse cardiovascular events in patients with established coronary artery disease. Hypertension 45:980–985. https://doi.org/10.1161/01.hyp.0000165025.16381.44

    Article  CAS  PubMed  Google Scholar 

  34. Demir S, Ortak H, Benli İ, Alim S, Bütün İ, Güneş A, Ateş Ö (2015) Genetic association between arterial stiffness-related gene polymorphisms in BRVO and CRVO patients in a Turkish population. Retina 35:2043–2051. https://doi.org/10.1097/iae.0000000000000580

    Article  CAS  PubMed  Google Scholar 

  35. Asmar RG, Pannier B, Santoni JP, Laurent S, London GM, Levy BI, Safar ME (1988) Reversion of cardiac hypertrophy and reduced arterial compliance after converting enzyme inhibition in essential hypertension. Circulation 78:941–950. https://doi.org/10.1161/01.cir.78.4.941

    Article  CAS  PubMed  Google Scholar 

  36. Mourad JJ, Girerd X, Boutouyrie P, Laurent S, Safar M, London G (1997) Increased stiffness of radial artery wall material in end-stage renal disease. Hypertension 30:1425–1430. https://doi.org/10.1161/01.hyp.30.6.1425

    Article  CAS  PubMed  Google Scholar 

  37. Saba PS, Roman MJ, Pini R, Spitzer M, Ganau A, Devereux RB (1993) Relation of arterial pressure waveform to left ventricular and carotid anatomy in normotensive subjects. J Am Coll Cardiol 22:1873–1880. https://doi.org/10.1016/0735-1097(93)90772-s

    Article  CAS  PubMed  Google Scholar 

  38. Adiyeke SK, Kutlu N, Aytogan H, Aras B, Yoyler G, Ture G, Talay E, Talay Dayangac G (2020) Thicknesses of sclera and lamina cribrosa in patients with central retinal vein occlusion. Retina 40:2050–2054. https://doi.org/10.1097/iae.0000000000002712

    Article  CAS  PubMed  Google Scholar 

  39. Benetos A, Thomas F, Joly L, Blacher J, Pannier B, Labat C, Salvi P, Smulyan H, Safar ME (2010) Pulse pressure amplification a mechanical biomarker of cardiovascular risk. J Am Coll Cardiol 55:1032–1037. https://doi.org/10.1016/j.jacc.2009.09.061

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

I’d like to acknowledge the help of Sertan Göktas. He has always supported and nurtured me with his generous comments and kindness.

Funding

No author has a financial or proprietary interest in any material or method mentioned.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Fatih Karadağ.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karadağ, M.F. Evaluation of augmentation index and pulse wave velocity measurements in central retinal vein occlusion patients with and without hypertension. Int Ophthalmol 42, 1347–1354 (2022). https://doi.org/10.1007/s10792-022-02237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-022-02237-1

Keywords

Navigation