Skip to main content

Advertisement

Log in

Macula and optic disk features in methamphetamine and crystal methamphetamine addicts using optical coherence tomography

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Methamphetamine and crystal methamphetamine abusers were compared with healthy subjects using optical coherence tomography to assess their retinal nerve fiber layer, macula, and optic disk characteristics.

Methods

Forty-one methamphetamine and crystal methamphetamine abusers and 42 healthy subjects (mean ± SD of age: 35.82 ± 8.6 and 37.76 ± 9.1 years, respectively) were incorporated in this cross-sectional study. The drug abusers had a history of at least five years of substance use through smoking. Fourier-domain optical coherence tomography was used to image and assess the characteristics of retinal nerve fiber layer, macular thickness, and optic disk in the study groups.

Results

The retinal nerve fiber layer thickness was significantly lower in the superior and temporal retinal quadrants of drug abusers than healthy subjects (P = 0.008 and P = 0.028, respectively). This study did not find a significant difference between drug abusers and healthy controls regarding optic to disk ratio, rim area, and disk area (P > 0.05). The comparison between the study groups showed that the reductions in perifovea and the superior quadrant of parafoveal thickness were statistically significant (P < 0.001 and P = 0.029, respectively).

Conclusion

Fourier-domain optical coherence tomography measurements showed that the retinal nerve fiber layer and macular thickness were different between methamphetamine and crystal methamphetamine abusers and healthy subjects, which should be considered in clinical practice. It seems that these drug abuses can cause alterations in retinal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Courtney KE, Ray LA (2014) Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol Depend 143:11–21. https://doi.org/10.1016/j.drugalcdep.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  2. Ciccarone D (2011) Stimulant abuse: pharmacology, cocaine, methamphetamine, treatment, attempts at pharmacotherapy. Prim Care 38(1):41–58. https://doi.org/10.1016/j.pop.2010.11.004

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yu S, Zhu L, Shen Q, Bai X, Di X (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol. https://doi.org/10.1155/2015/103969

    Article  PubMed  PubMed Central  Google Scholar 

  4. Matsumoto T, Kamijo A, Miyakawa T, Endo K, Yabana T, Kishimoto H, Okudaira K, Iseki E, Sakai T, Kosaka K (2002) Methamphetamine in Japan: the consequences of methamphetamine abuse as a function of route of administration. Addiction 97:809–817. https://doi.org/10.1046/j.1360-0443.2002.00143.x

    Article  PubMed  Google Scholar 

  5. Tait RJ, Whetton S, Shanahan M, Cartwright K, Ferrante A, Gray D, Kaye S, McKetin R, Pidd K, Ritter A, Roche A, Allsop S (2018) Quantifying the societal cost of methamphetamine use to Australia. Int J Drug Policy 62:30–36. https://doi.org/10.1016/j.drugpo.2018.08.015

    Article  PubMed  Google Scholar 

  6. Gonzales R, Mooney L, Rawson RA (2010) The methamphetamine problem in the United States. Annu Rev Public Health 31:385–398. https://doi.org/10.1146/annurev.publhealth.012809.103600

    Article  PubMed  PubMed Central  Google Scholar 

  7. Russell K, Dryden DM, Liang Y, Friesen C, O’Gorman K, Durec T, Wild TC, Klassen TP (2008) Risk factors for methamphetamine use in youth: a systematic review. BMC Pediatr 8:48. https://doi.org/10.1186/1471-2431-8-48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lamyai W, Pono K, Indrakamhaeng D, Saengsin A, Songhong N, Khuwuthyakorn P, Sribanditmongkol P, Junkuy A, Srisurapanont M (2019) Risks of psychosis in methamphetamine users: cross-sectional study in Thailand. BMJ Open 9:e032711. https://doi.org/10.1136/bmjopen-2019-032711

    Article  PubMed  PubMed Central  Google Scholar 

  9. Marshall BD, Werb D (2010) Health outcomes associated with methamphetamine use among young people: a systematic review. Addiction 105:991–1002. https://doi.org/10.1111/j.1360-0443.2010.02932.x

    Article  PubMed  Google Scholar 

  10. Hazin R, Cadet JL, Kahook MY, Saed D (2009) Ocular manifestations of crystal methamphetamine use. Neurotox Res 15:187–191. https://doi.org/10.1007/s12640-009-9019-z

    Article  CAS  PubMed  Google Scholar 

  11. Peragallo J, Biousse V, Newman NJ (2013) Ocular manifestations of drug and alcohol abuse. Curr Opin Ophthalmol 24:566–573. https://doi.org/10.1097/icu.0b013e3283654db2

    Article  PubMed  PubMed Central  Google Scholar 

  12. Shaw HE Jr, Lawson JG, Stulting RD (1985) Amaurosis fugax and retinal vasculitis associated with methamphetamine inhalation. J Clin Neuroophthalmol 5:169–176. https://doi.org/10.3109/01658108509079659

    Article  PubMed  Google Scholar 

  13. Guo J, Tang W, Liu W, Zhang Y, Wang L, Wang W (2019) Bilateral methamphetamine-induced ischemic retinopathy. Am J Ophthalmol Case Rep 15:100473. https://doi.org/10.1016/j.ajoc.2019.100473

    Article  PubMed  PubMed Central  Google Scholar 

  14. Talebnejad MR, Khazaei P, Jahanbani-Ardakani H, Saberikia Z, Sarani EM, Khalili MR (2010) Effects of chronic methamphetamine abuse on the retinal nerve fiber layer, ganglion cell layer and Bruch’s membrane opening minimum rim width. Neurotoxicology 80:140–143. https://doi.org/10.1016/j.neuro.2020.07.005

    Article  CAS  Google Scholar 

  15. Lee M, Leskova W, Eshaq RS, Harris NR (2020) Acute changes in the retina and central retinal artery with methamphetamine. Exp Eye Res 193:107964. https://doi.org/10.1016/j.exer.2020.107964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar RL, Kaiser PK, Lee MS (2006) Crystalline retinopathy from nasal ingestion of methamphetamine. Retina 26:823–824. https://doi.org/10.1097/01.iae.0000244275.03588.ad

    Article  PubMed  Google Scholar 

  17. Kumar A, Chawla R, Kumawat D, Pillay G (2017) Insight into high myopia and the macula. Indian J Ophthalmol 65:85. https://doi.org/10.4103/ijo.ijo_863_16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Garas A, Tóth M, Vargha P, Holló G (2010) Comparison of repeatability of retinal nerve fiber layer thickness measurement made using the RTVue Fourier-domain optical coherence tomograph and the GDx scanning laser polarimeter with variable or enhanced corneal compensation. J Glaucoma 19:412–417. https://doi.org/10.1097/ijg.0b013e3181bdb549

    Article  PubMed  Google Scholar 

  19. Kola M, Önal M, Türk A, Erdöl H (2019) Repeatability and agreement of macular thickness measurements obtained with two different scan modes of the optovue RTVue optical coherence tomography device. Turk J Ophthalmol 49:78. https://doi.org/10.4274/tjo.galenos.2018.88972

    Article  PubMed  PubMed Central  Google Scholar 

  20. González-García AO, Vizzeri G, Bowd C, Medeiros FA, Zangwill LM, Weinreb RN (2009) Reproducibility of RTVue retinal nerve fiber layer thickness and optic disc measurements and agreement with Stratus optical coherence tomography measurements. Am J Ophthalmol 147(1067–74):74.e1. https://doi.org/10.1016/j.ajo.2008.12.032

    Article  Google Scholar 

  21. Lisboa R, Paranhos A, Weinreb RN, Zangwill LM, Leite MT, Medeiros FA (2013) Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Invest Ophthal Vis Sci 54:3417–3425. https://doi.org/10.1167/iovs.13-11676

    Article  PubMed  PubMed Central  Google Scholar 

  22. Panenka WJ, Procyshyn RM, Lecomte T, MacEwan GW, Flynn SW, Honer WG, Barr AM (2013) Methamphetamine use: a comprehensive review of molecular, preclinical and clinical findings. Drug Alcohol Depend 129:167–179. https://doi.org/10.1016/j.drugalcdep.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  23. Gemelli H, Fidalgo TM, Gracitelli CP, de Andrade EP (2019) Retinal nerve fiber layer analysis in cocaine users. Psychiatry Res 271:226–229. https://doi.org/10.1016/j.psychres.2018.11.058

    Article  PubMed  Google Scholar 

  24. Melo P, Zanon-Moreno V, Alves CJ, Magalhães A, Tavares MA, Pinazo-Duran MD, Moradas-Ferreira P (2010) Oxidative stress response in the adult rat retina and plasma after repeated administration of methamphetamine. Neurochem Int 56:431–436. https://doi.org/10.1016/j.neuint.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  25. Seo JW, Jones SM, Hostetter TA, Iliff JJ, West GA (2016) Methamphetamine induces the release of endothelin. J Neurosci Res 94:170–178. https://doi.org/10.1002/jnr.23697

    Article  CAS  PubMed  Google Scholar 

  26. Introini U, Casalino G, Querques G, Bagini M, Bandello F (2015) Acute macular neuroretinopathy following intranasal use of cocaine. Acta Ophthalmol 93:e239–e240. https://doi.org/10.1111/aos.12585

    Article  PubMed  Google Scholar 

  27. Fawzi AA, Pappuru RR, Sarraf D, Le PP, McCannel CA, Sobrin L, Goldstein DA, Honowitz S, Walsh AC, Sadda SR, Jampol LM (2012) Acute macular neuroretinopathy: long-term insights revealed by multimodal imaging. Retina 32:1500–1513. https://doi.org/10.1097/iae.0b013e318263d0c3

    Article  PubMed  Google Scholar 

  28. Fatehi N, Nowroozizadeh S, Henry S, Coleman AL, Caprioli J, Nouri-Mahdavi K (2017) Association of structural and functional measures with contrast sensitivity in glaucoma. AM J Ophthalmol 178:129–139. https://doi.org/10.1016/j.ajo.2017.03.019

    Article  PubMed  PubMed Central  Google Scholar 

  29. McAnany JJ, Park JC, Liu K, Liu M, Chen YF, Chau FY, Lim JI (2020) Contrast sensitivity is associated with outer-retina thickness in early-stage diabetic retinopathy. Acta ophthalmol 98:e224–e231. https://doi.org/10.1111/aos.14241

    Article  PubMed  Google Scholar 

  30. Puell MC, Palomo-Álvarez C, Pérez-Carrasco MJ (2018) Macular inner retinal layer thickness in relation to photopic and mesopic contrast sensitivity in healthy young and older subjects. Invest Ophthal Vis Sci 59:5487–5493. https://doi.org/10.1167/iovs.18-25334

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of AL-Zahra Eye Hospital and Zahedan Health Center. We also thank Mr. Sadegh Basharaf, Miss Maryam Khorsandi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahereh Rakhshandadi.

Ethics declarations

Conflict of interest

None of the authors has any conflicting interests to disclose.

Ethical approval

The study was approved by the Institutional Review Board/Ethics Committee of Zahedan University of Medical Sciences (Code ID: IR.ZAUMS.REC.1398.431). The procedures performed in this study were based on the principles of the Declaration of Helsinki. The participants received information about the study and written informed consent forms were signed by them.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahjoob, M., Maleki, AR., Askarizadeh, F. et al. Macula and optic disk features in methamphetamine and crystal methamphetamine addicts using optical coherence tomography. Int Ophthalmol 42, 2055–2062 (2022). https://doi.org/10.1007/s10792-021-02200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-02200-6

Keywords

Navigation