Skip to main content

Advertisement

Log in

Evaluation of topographic, tomographic, topometric, densitometric, and aberrometric features of cornea with pentacam HR system in subclinical keratoconus

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate topographic, tomographic, topometric, densitometric, and aberrometric parameters in subclinical keratoconus with the Pentacam HR imaging system.

Methods

Data of 3128 patients were evaluated, finding in 108 patients clinical keratoconus in one eye and subclinical keratoconus in the other. Corneal topographic, tomographic, topometric, densitometric, and aberrometric values obtained using the Pentacam HR imaging system were compared between clinical keratoconus, subclinical keratoconus, and normal eyes.

Results

Comparing eyes with subclinical keratoconus and the control group, while flat K, horizontal coma, horizontal trefoil, and vertical trefoil values were similar (p > 0.05 for each), all other parameters were significantly different (p < 0.05 for each). Densitometry values of eyes with subclinical keratoconus were significantly higher in all layers of the 0–2 mm annular area and in the anterior and central layers of the 2–6 mm annular area compared to the control group (p < 0.05 for each). According to the receiver operating characteristic curve analysis, the densitometry region with the largest area under the curve was the anterior layer of the 0–2 mm annular area. The sensitivity in this region was 79.4% and the specificity 73.2% in distinguishing eyes with subclinical keratoconus from normal eyes when 19.3 GSU was considered the threshold.

Conclusion

Corneal densitometry values in the 0–2 and 2–6 mm annular areas, especially in the anterior layers, are parameters that can be used to predict and distinguish subclinical keratoconus from normal eyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Romero-Jiménez M, Santodomingo-Rubido J, Wolffsohn JS (2010) Keratoconus: a review. Cont Lens Anter Eye 33:157–166

    Article  Google Scholar 

  2. Vazirani J, Basu S (2013) Keratoconus: current perspectives. Clin Ophthalmol 7:2019–2030

    PubMed  PubMed Central  Google Scholar 

  3. Meek KM, Tuft SJ, Huang Y, Gil PSI, Hayes S, Newton RH, Bron AJ (2005) Changes in collagen orientation and distribution in keratoconus corneas. Invest Ophthalmol Vis Sci 46:1948–1956

    Article  PubMed  Google Scholar 

  4. Li X, Rabinowitz YS, Rasheed K, Yang H (2004) Longitudinal study of the normal eyes in unilateral keratoconus patients. Ophthalmology 111:440–446

    Article  PubMed  Google Scholar 

  5. Oruçoğlu F (2013) Incidence and tomographic evaluation of unilateral keratoconus. Turk J Ophthalmol 43:83–86

    Article  Google Scholar 

  6. Holland DR, Maeda N, Hannush SB, Riveroll LH, Green MT, Klyce SD, Wilson SE (1997) Unilateral keratoconus; incidence and quantitative topographic analysis. Ophthalmology 104:1409–1413

    Article  CAS  PubMed  Google Scholar 

  7. Çağıl N, Uğurlu N, Çakmak HB, Kocamış Sİ, Simavli H, Şimşek Ş (2013) Corneal volume measurements with pentacam for detection of keratoconus and subclinical keratoconus. Turk J Ophthalmol 43:77–82

    Article  Google Scholar 

  8. Maguire LJ, Lowry JC (1991) Identifying progression of subclinical keratoconus by serial topography analysis. Am J Ophthalmol 112:41–45

    Article  CAS  PubMed  Google Scholar 

  9. Saad A, Gatinel D (2010) Topographic and tomographic properties of forme fruste keratoconus corneas. Invest Ophthalmol Vis Sci 51:5546–5555

    Article  PubMed  Google Scholar 

  10. Klyce SD (2009) Chasing the suspect: keratoconus. Br J Ophthalmol 93:845–847

    Article  PubMed  Google Scholar 

  11. Naderan M, Rajabi MT, Zarrinbakhsh P (2017) Intereye asymmetry in bilateral keratoconus, keratoconus suspect and normal eyes and its relationship with disease severity. Br J Ophthalmol 101:1475–1482

    Article  PubMed  Google Scholar 

  12. Sterker I, Wiedemann P (1998) Corneal topography of the partner eye in unilateral keratoconus. Ophthalmologe 95:317–321

    Article  CAS  PubMed  Google Scholar 

  13. Lee LR, Hirst LW, Readshaw G (1995) Clinical detection of unilateral keratoconus. Aust N Z J Ophthalmol 23:129–133

    Article  CAS  PubMed  Google Scholar 

  14. Piñero DP (2015) Technologies for anatomical and geometric characterization of the corneal structure and anterior segment: a review. Semin Ophthalmol 30:161–170

    Article  PubMed  Google Scholar 

  15. Montalbán R, Piñero DP, Javaloy J, Alió JL (2012) Scheimpflug photography-based clinical characterization of the correlation of the corneal shape between the anterior and posterior corneal surfaces in the normal human eye. J Cataract Refract Surg 38:1925–1933

    Article  PubMed  Google Scholar 

  16. Belin MW, Ambrósio R (2013) Scheimpflug imaging for keratoconus and ectatic disease. Indian J Ophthalmol 61:401–406

    Article  PubMed  PubMed Central  Google Scholar 

  17. Koc M, Tekin K, Tekin MI, Uzel MM, Kosekahya P, Ozulken K, Yilmazbas P (2018) An early finding of keratoconus: increase in corneal densitometry. Cornea 37:580–586

    Article  PubMed  Google Scholar 

  18. Atalay E, Özalp O, Erol MA, Bilgin M, Yıldırım N (2020) A combined biomechanical and tomographic model for identifying cases of subclinical keratoconus. Cornea 39:461–467

    Article  PubMed  Google Scholar 

  19. Koc M, Tekin K, Kiziltoprak H, Inanc M, Kosekahya P, Ozulken K, Durukan I (2020) Topometric and tomographic evaluation of subclinical keratoconus. Ophthalmic Epidemiol 27:289–297

    Article  PubMed  Google Scholar 

  20. Kataria P, Padmanabhan P, Gopalakrishnan A, Padmanaban V, Mahadik S, Ambrósio R Jr (2019) Accuracy of scheimpflug-derived corneal biomechanical and tomographic indices for detecting subclinical and mild keratectasia in a South Asian population. J Cataract Refract Surg 45:328–336

    Article  PubMed  Google Scholar 

  21. Rabinowitz YS (1998) Keratoconus. Surv Ophthalmol 42:297–319

    Article  CAS  PubMed  Google Scholar 

  22. Reddy JC, Rapuano CJ, Cater JR, Suri K, Nagra PK, Hammersmith KM (2014) Comparative evaluation of dual Scheimpflug imaging parameters in keratoconus, early keratoconus, and normal eyes. J Cataract Refract Surg 40:582–592

    Article  PubMed  Google Scholar 

  23. Klyce SD (1984) Computer-assisted corneal topography. High-resolution graphic presentation and analysis of keratoscopy. Invest Ophthalmol Vis Sci 25:1426–1435

    CAS  PubMed  Google Scholar 

  24. Wilson SE, Ambrósio R (2001) Computerized corneal topography and its importance to wavefront technology. Cornea 20:441–454

    Article  CAS  PubMed  Google Scholar 

  25. Ambrósio R Jr, Klyce SD, Wilson SE (2003) Corneal topographic and pachymetric screening of keratorefractive patients. J Refract Surg 19:24–29

    Article  PubMed  Google Scholar 

  26. Belin MW, Litoff D, Strods SJ, Winn SS, Smith RS (1992) The PAR technology corneal topography system. Refract Corneal Surg 8:88–96

    Article  CAS  PubMed  Google Scholar 

  27. Huang D (2003) A reliable corneal tomography system is still needed. Ophthalmology 110:455–456

    Article  PubMed  Google Scholar 

  28. Ambrósio Jr R, Belin MW (2010) Imaging of the cornea: topography vs tomography. J Refract Surg 26:847–849

  29. Saglik A, Celik H (2019) Comparison of holladay equivalent keratometry readings and anterior corneal surface keratometry measurements in keratoconus. Int Ophthalmol 39:1501–1509

    Article  PubMed  Google Scholar 

  30. Reinstein DZ, Archer TJ, Urs R, Gobbe M, RoyChoudhury A, Silverman RH (2015) Detection of keratoconus in clinically and algorithmically topographically normal fellow eyes using epithelial thickness analysis. J Refract Surg 31:736–744

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mercatelli R, Ratto F, Rossi F, Tatini F, Menabuoni L, Malandrini A, Nicoletti R, Pini R, Pavone FS, Cicchi R (2017) Three-dimensional mapping of the orientation of collagen corneal lamellae in healthy and keratoconic human corneas using SHG microscopy. J Biophotonics 10:75–83

    Article  CAS  PubMed  Google Scholar 

  32. Vinciguerra R, Ambrósio R, Roberts CJ, Azzolini C, Vinciguerra P (2017) Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg 33:399–407

    Article  PubMed  Google Scholar 

  33. Uçakhan ÖÖ, Cetinkor V, Özkan M, Kanpolat A (2011) Evaluation of Scheimpflug imaging parameters in subclinical keratoconus, keratoconus, and normal eyes. J Cataract Refract Surg 37:1116–1124

    Article  PubMed  Google Scholar 

  34. Labiris G, Giarmoukakis A, Gatzioufas Z, Sideroudi H, Kozobolis V, Seitz B (2014) Diagnostic capacity of the keratoconus match index and keratoconus match probability in subclinical keratoconus. J Cataract Refract Surg 40:999–1005

    Article  PubMed  Google Scholar 

  35. Rabinowitz YS, Rasheed K (1999) KISA% index: a quantitative videokeratography algorithm embodying minimal topographic criteria for diagnosing keratoconus. J Cataract Refract Surg 25:1327–1335

    Article  CAS  PubMed  Google Scholar 

  36. Jafarinasab MR, Feizi S, Karimian F, Hasanpour H (2013) Evaluation of corneal elevation in eyes with subclinical keratoconus and keratoconus using Galilei double Scheimpflug analyzer. Eur J Ophthalmol 23:377–384

    Article  PubMed  Google Scholar 

  37. Muftuoglu O, Ayar O, Ozulken K, Ozyol E, Akıncı A (2013) Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 39:1348–1357

    Article  PubMed  Google Scholar 

  38. Fukuda S, Beheregaray S, Hoshi S, Yamanari M, Lim Y, Hiraoka T, Yasuno Y, Oshika T (2013) Comparison of three-dimensional optical coherence tomography and combining a rotating Scheimpflug camera with a Placido topography system for forme fruste keratoconus diagnosis. Br J Ophthalmol 97:1554–1559

    Article  PubMed  Google Scholar 

  39. Feizi S, Yaseri M, Kheiri B (2016) Predictive ability of galilei to distinguish subclinical keratokonus and keratokonus from normal corneas. J Ophthalmic Vis Res 11:8–16

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hashemi H, Beiranvand A, Yekta A, Maleki A, Yazdani N, Khabazkhoob M (2016) Pentacam top indices for diagnosing subclinical and definite keratoconus. J Curr Ophthalmol 28:21–26

    Article  PubMed  PubMed Central  Google Scholar 

  41. Huseynli S, Salgado-Borges J, Alio JL (2018) Comparative evaluation of Scheimpflug tomography parameters between thin non-keratoconic, subclinical keratoconic, and mild keratoconic corneas. Eur J Ophthalmol 28:521–534

    Article  PubMed  Google Scholar 

  42. Shajari M, Jaffary I, Herrmann K, Grunwald C, Steinwender G, Mayer WJ, Kohnen T (2018) Early tomographic changes in the eyes of patients with keratoconus. J Refract Surg 34:254–259

    Article  PubMed  Google Scholar 

  43. Lopes B, Ramos I, Ambrósio R Jr (2014) Corneal densitometry in keratoconus. Cornea 33:1282–1286

    Article  PubMed  Google Scholar 

  44. Anayol MA, Sekeroglu MA, Ceran BB, Dogan M, Gunaydin S, Yilmazbas P (2016) Quantitative assessment of corneal clarity in keratoconus: a case control study of corneal densitometry. Eur J Ophthalmol 26:18–23

    Article  PubMed  Google Scholar 

  45. Mathew JH, Goosey JD, Bergmanson JPG (2011) Quantified histopathology of the keratoconic cornea. Optom Vis Sci 88:988–997

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mathew JH, Goosey JD, Söderberg PG, Bergmanson JPG (2015) Lameller changes in the keratoconic cornea. Acta Ophthalmol 93:767–773

    Article  CAS  PubMed  Google Scholar 

  47. Otri AM, Fares U, Al-Aqaba MA, Dua HS (2012) Corneal densitometry as an indicator of corneal health. Ophthalmology 119:501–508

    Article  PubMed  Google Scholar 

  48. Ni Dhubhghaill S, Rozema JJ, Jongenelen S, Ruiz Hidalgo I, Zakaria N, Tassignon MJ (2014) Normative values for corneal densitometry analysis by Scheimpflug optical assessment. Invest Ophthalmol Vis Sci 55:162–168

    Article  PubMed  Google Scholar 

  49. Li Y, Chamberlain W, Tan O, Brass R, Weiss JL, Huang D (2016) Subclinical keratoconus detection by pattern analysis of corneal and epithelial thickness maps with optical coherence tomography. J Cataract Refract Surg 42:284–295

    Article  PubMed  PubMed Central  Google Scholar 

  50. Read SA, Collins MJ (2009) Diurnal variation of corneal shape and thickness. Optom Vis Sci 86:170–180

    Article  PubMed  Google Scholar 

Download references

Funding

No funding was received for this research.

Author information

Authors and Affiliations

Authors

Contributions

Design of the study (HHO, MK); conduct of the study (HHO, HK); collection and management of data (HHO, KT, HK, EA); analysis and interpretation of data (HHO, MK, HK); preparation of manuscript (HHO, MK, HK); review or approval of manuscript (HHO, MK, HK, KT, EA).

Corresponding author

Correspondence to Haci Hasan Ozkan.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozkan, H.H., Koc, M., Kiziltoprak, H. et al. Evaluation of topographic, tomographic, topometric, densitometric, and aberrometric features of cornea with pentacam HR system in subclinical keratoconus. Int Ophthalmol 41, 1729–1741 (2021). https://doi.org/10.1007/s10792-021-01732-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-021-01732-1

Keywords

Navigation