Skip to main content

Advertisement

Log in

Effect of antiglaucoma agents on short-term intraocular pressure fluctuations after intravitreal bevacizumab injections

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To evaluate the effect of prophylactic pressure-lowering medications on intraocular pressure (IOP) spikes after intravitreal injections (IVIs)

Methods

In this randomized double-blind clinical trial, 74 eyes that were candidates for intravitreal anti-vascular endothelial growth factor (VEGF) injection (IVI) (0.05 mL, 1.25 mg of bevacizumab) were enrolled and sorted randomly into five groups, group 1: topical timolol 0.5% (n = 16); group 2: topical brimonidin (n = 15); group 3: oral acetazolamide 250 mg (n = 14); group 4: intravenous mannitol (1.5 gr/kg) (n = 16); group 5: no intraocular pressure-lowering medication (n = 13). Medications were administered 30–60 min prior to injection. None of the patients had history of glaucoma. Intraocular pressure was measured before (baseline), 5 min after (T5), 10 min after (T10), 15 min after (T15) and 30 min after (T30) IVI using Goldmann Tonometer.

Results

There was a statistically significant, but relatively weak negative correlation between the amount of vitreous reflux post-IVI intraocular pressure elevation (Spearman's rho = −0.315, p = 0.006). There was no difference of the amount of vitreous reflux (P = 0.196) between study groups. The baseline mean IOP for Groups 1, 2, 3,4 and 5 were 11.19 ± 3.7, 10.07 ± 2.19, 11 ± 2.98, 10.13 ± 3.48 and12.54 ± 2.60 mmHg, respectively. (P = 0.214)

There was no difference of peak IOP spike between groups at T5: 37 ± 19.7, 34.80 ± 15.76, 33.43 ± 18.29, 33.56 ± 16.88, 34.92 ± 9.99 mmHg (P = 0.977). There was also no difference of IOP at T10, T15 and T30 between study groups: P = 0.979, P = 0.994 and P = 0.692, respectively.

Conclusion

Although it is advisable to prevent IOP spikes, our study showed that use of prophylactic pressure-lowering medications with every mechanism of action has no effect in IOP spikes following intravitreal bevacizumab injections in non-glaucomatous eyes.

Trial registrationThe study was registered with clinicaltrails.gov (ID# NCT02140450). Trial registration date: 05.09.2014

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Heier JS, Bressler NM, Avery RL, Bakri SJ, Boyer DS, Brown DM et al (2016) Comparison of aflibercept, bevacizumab, and ranibizumab for treatment of diabetic macular edema: extrapolation of data to clinical practice. JAMA Ophthalmol 134(1):95–99

    Article  Google Scholar 

  2. Schmidt-Erfurth U, Garcia-Arumi J, Gerendas BS, Midena E, Sivaprasad S, Tadayoni R et al (2019) Guidelines for the management of retinal vein occlusion by the European society of retina specialists (EURETINA). Ophthalmologica 242(3):123–162

    Article  CAS  Google Scholar 

  3. Solomon SD, Lindsley K, Vedula SS, Krzystolik MG, Hawkins BS (2014) Anti-vascular endothelial growth factor for neovascular age-related macular degeneration. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD005139.pub

    Article  PubMed  PubMed Central  Google Scholar 

  4. Haider MA, Imtiaz U, Javed F, Haider Z (2017) Incidence of acute endophthalmitis after office based intravitreal bevacizumab injection. J Pak Med Assoc 67(12):1917–1919

    PubMed  Google Scholar 

  5. Storey PP, Pancholy M, Wibbelsman TD, Obeid A, Su D, Borkar D et al (2019) Rhegmatogenous retinal detachment after intravitreal injection of anti-vascular endothelial growth factor. Ophthalmology 126(10):1424–1431

    Article  Google Scholar 

  6. Williams PD, Chong D, Fuller T, Callanan D (2016) Noninfectious vitritis after intravitreal injection of anti-vegf agents: variations in rates and presentation by medication. Retina 36(5):909–913

    Article  CAS  Google Scholar 

  7. Cui QN, Gray IN, Yu Y, VanderBeek BL (2019) Repeated intravitreal injections of antivascular endothelial growth factors and risk of intraocular pressure medication use. Graefes Arch Clin Exp Ophthalmol 257(9):1931–1939

    Article  CAS  Google Scholar 

  8. Mathalone N, Arodi-Golan A, Sar S, Wolfson Y, Shalem M, Lavi I et al (2012) Sustained elevation of intraocular pressure after intravitreal injections of bevacizumab in eyes with neovascular age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 250(10):1435–1440

    Article  CAS  Google Scholar 

  9. Karakurt Y, Ucak T, Tasli G, Agcayazi B, Icel E, Yilmaz H (2018) The effects of intravitreal ranibizumab, aflibercept or dexamethasone implant injections on intraocular pressure changes. Med Sci Monit 24:9019–9025

    Article  CAS  Google Scholar 

  10. Lim HB, Kim MS, Jo YJ, Kim JY (2016) Short-term visual acuity and intraocular pressure changes and their correlation after anti-vascular endothelial growth factor injection. Ophthalmologica 236(1):36–42

    Article  CAS  Google Scholar 

  11. von Hanno T, Kinge B, Fossen K (2010) Retinal artery occlusion following intravitreal anti-VEGF therapy. Acta Ophthalmol 88(2):263–266

    Article  Google Scholar 

  12. Soheilian M, Karimi S, Montahae T, Nikkhah H, Mosavi SA (2017) Effects of intravitreal injection of bevacizumab with or without anterior chamber paracentesis on intraocular pressure and peripapillary retinal nerve fiber layer thickness: a prospective study. Graefes Arch Clin Exp Ophthalmol 255(9):1705–1712

    Article  CAS  Google Scholar 

  13. Song S, Yu XB, Dai H (2016) Effect of prophylactic intraocular pressure-lowering medication (brinzolamide) on intraocular pressure after ranibizumab intravitreal injection: a case-control study. Indian J Ophthalmol 64(10):762–766

    Article  Google Scholar 

  14. Ozcaliskan S, Ozturk F, Yilmazbas P, Beyazyildiz O (2015) Effect of dorzolamide-timolol fixed combination prophylaxis on intraocular pressure spikes after intravitreal bevacizumab injection. Int J Ophthalmol 8(3):496–500

    PubMed  PubMed Central  Google Scholar 

  15. Pece A, Allegrini D, Montesano G, Dimastrogiovanni AF (2016) Effect of prophylactic timolol 0.1% gel on intraocular pressure after an intravitreal injection of ranibizumab: a randomized study. Clin Ophthalmol 10:1131–1138

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hohn F, Mirshahi A (2010) Impact of injection techniques on intraocular pressure (IOP) increase after intravitreal ranibizumab application. Graefes Arch Clin Exp Ophthalmol 248(10):1371–1375

    Article  Google Scholar 

  17. Knecht PB, Michels S, Sturm V, Bosch MM, Menke MN (2009) Tunnelled versus straight intravitreal injection: intraocular pressure changes, vitreous reflux, and patient discomfort. Retina 29(8):1175–1181

    Article  Google Scholar 

  18. Lemos V, Cabugueira A, Noronha M, Abegao Pinto L, Reina M, Branco J et al (2015) Intraocular Pressure in Eyes Receiving Intravitreal Antivascular Endothelial Growth Factor Injections. Ophthalmologica 233(3–4):162–168

    Article  CAS  Google Scholar 

  19. Choi DY, Ortube MC, McCannel CA, Sarraf D, Hubschman JP, McCannel TA et al (2011) Sustained elevated intraocular pressures after intravitreal injection of bevacizumab, ranibizumab, and pegaptanib. Retina 31(6):1028–1035

    Article  CAS  Google Scholar 

  20. Good TJ, Kimura AE, Mandava N, Kahook MY (2011) Sustained elevation of intraocular pressure after intravitreal injections of anti-VEGF agents. Br J Ophthalmol 95(8):1111–1114

    Article  Google Scholar 

  21. Enders P, Sitnilska V, Altay L, Schaub F, Muether PS, Fauser S (2017) Retinal nerve fiber loss in anti-vegf therapy for age-related macular degeneration can be decreased by anterior chamber paracentesis. Ophthalmologica 237(2):111–118

    Article  Google Scholar 

  22. Park J, Lee M (2018) Short-term effects and safety of an acute increase of intraocular pressure after intravitreal bevacizumab injection on corneal endothelial cells. BMC Ophthalmol 18(1):17

    Article  Google Scholar 

  23. Morlet N, Young SH (1993) Prevention of intraocular pressure rise following intravitreal injection. Br J Ophthalmol 77(9):572–573

    Article  CAS  Google Scholar 

  24. Gregori NZ, Weiss MJ, Goldhardt R, Schiffman JC, Vega E, Mattis CA et al (2014) Ocular decompression with cotton swabs lowers intraocular pressure elevation after intravitreal injection. J Glaucoma 23(8):508–512

    Article  Google Scholar 

  25. Helbig H, Noske W, Kleineidam M, Kellner U, Foerster MH (1995) Bacterial endophthalmitis after anterior chamber paracentesis. Br J Ophthalmol 79(9):866

    Article  CAS  Google Scholar 

  26. Saxena S, Lai TY, Koizumi H, Farah ME, Ferrara D, Pelayes D et al (2019) Anterior chamber paracentesis during intravitreal injections in observational trials: effectiveness and safety and effects. Int J Retina Vitreous 5:8

    Article  Google Scholar 

  27. Meyer C, Rodrigues E, Michels S, Mennel S, Schmidt J, Helb H-M et al (2010) Incidence of damage to the crystalline lens during intravitreal injections. J ocular pharmacol therapeutics 26:491–495

    Article  CAS  Google Scholar 

  28. Pang CE, Mrejen S, Hoang QV, Sorenson JA, Freund KB (2015) Association between needle size, postinjection reflux, and intraocular pressure spikes after intravitreal injections. Retina 35(7):1401–1406

    Article  Google Scholar 

  29. Theoulakis PE, Lepidas J, Petropoulos IK, Livieratou A, Brinkmann CK, Katsimpris JM (2010) Effect of brimonidine/timolol fixed combination on preventing the short-term intraocular pressure increase after intravitreal injection of ranibizumab. Klin Monbl Augenheilkd 227(4):280–284

    Article  CAS  Google Scholar 

  30. Kim GN, Han YS, Chung IY, Seo SW, Park JM, Yoo JM (2013) Effect of Dorzolamide/Timolol or Brinzolamide/Timolol prophylaxis on intravitreal anti-VEGF injection-induced intraocular hypertension. Semin Ophthalmol 28(2):61–67

    Article  Google Scholar 

  31. El Chehab H, Le Corre A, Agard E, Ract-Madoux G, Coste O, Dot C (2013) Effect of topical pressure-lowering medication on prevention of intraocular pressure spikes after intravitreal injection. Eur J Ophthalmol 23(3):277–283

    Article  Google Scholar 

  32. Frenkel MP, Haji SA, Frenkel RE (2010) Effect of prophylactic intraocular pressure-lowering medication on intraocular pressure spikes after intravitreal injections. Arch Ophthalmol 128(12):1523–1527

    Article  Google Scholar 

  33. Murray CD, Wood D, Allgar V, Walters G, Gale RP (2014) Short-term intraocular pressure trends following intravitreal ranibizumab injections for neovascular age-related macular degeneration-the role of oral acetazolamide in protecting glaucoma patients. Eye (Lond) 28(10):1218–1222

    Article  CAS  Google Scholar 

  34. Hoang QV, Mendonca LS, Della Torre KE, Jung JJ, Tsuang AJ, Freund KB (2012) Effect on intraocular pressure in patients receiving unilateral intravitreal anti-vascular endothelial growth factor injections. Ophthalmology 119(2):321–326

    Article  Google Scholar 

  35. Tseng JJ, Vance SK, Della Torre KE, Mendonca LS, Cooney MJ, Klancnik JM et al (2012) Sustained increased intraocular pressure related to intravitreal antivascular endothelial growth factor therapy for neovascular age-related macular degeneration. J Glaucoma 21(4):241–247

    Article  Google Scholar 

  36. Sayah DN, Szigiato A-A, Mazzaferri J, Descovich D, Duval R, Rezende FA et al (2020) Correlation of ocular rigidity with intraocular pressure spike after intravitreal injection of bevacizumab in exudative retinal disease. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-315595

    Article  PubMed  Google Scholar 

Download references

Funding

The study was funded and supported by the eye research center of Khatam Eye Hospital, Mashhad University of Medical Sciences, with the grant number: 910292.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by [Nasser shoeibi], [Zina Ghosi], [Habib Jafari] and [Arash Omidtabrizi]. The first draft of the manuscript was written by [Arash Omidtabrizi] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Arash Omidtabrizi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

This study was carried out in accordance with ethical standards set forth by the 1989 Declaration of Helsinki with the approval of the Institutional Review Board and Ethics Committee of the Mashhad University of Medical Sciences.

Consent to participate

All the patients provided a written informed consent to participate in the study.

Consent to publish

Patients signed informed consent regarding publishing their data.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

shoeibi, N., Ghosi, Z., Jafari, H. et al. Effect of antiglaucoma agents on short-term intraocular pressure fluctuations after intravitreal bevacizumab injections. Int Ophthalmol 41, 1081–1090 (2021). https://doi.org/10.1007/s10792-020-01667-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01667-z

Keywords

Navigation