Skip to main content
Log in

Vision function of pseudophakic eyes with posterior capsular opacification under different speed and spatial frequency

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the characteristics of dynamic visual acuity (DVA) and contrast sensitivity (CS) in pseudophakic patients with posterior capsular opacification (PCO).

Methods

Fifty-four eyes (36 patients) with PCO planned for laser capsulotomy were recruited. They underwent examinations of static visual acuity (SVA), DVA, CS and optical quality analysis (OQAS) before and one week after the laser treatment. Improvements in each index after laser treatment were analyzed. The visual quality of patients with good initial vision was studied separately.

Results

SVA, DVA and CS all significantly increased after capsulotomy (P < 0.05). Postoperative improvements in DVA were higher than in SVA, but they decreased when the speed increased. DVA at 15 dps gained the most improvement after capsulotomy. DVA at all analyzed speeds was significantly lower than SVA (P = 0.000). There was a significant speed-dependent decrease in DVA at lower speeds compared with higher speeds. The postoperative improvements in CS decreased when the spatial frequency was increased. The CS at the lower frequencies of 3 cpd and 6 cpd was the most improved after capsulotomy. CS was much lower at high frequencies (p < 0.05). There was a significant decrease in CS at higher spatial frequencies compared with lower frequencies. DVA improvements were correlated with CS improvements at medium spatial frequencies and with objective scattering index and Strehl ratio. The CS at all frequencies significantly improved for patients with good initial vision.

Conclusion

PCO could impair dynamic vision function, but CS was a more sensitive indication of visual complaints in patients with slight PCO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ao M, Li X, Huang C, Hou Z, Qiu W, Wang W (2014) Significant improvement in dynamic visual acuity after cataract surgery: a promising potential parameter for functional vision. Plos ONE 9(12):e115812. https://doi.org/10.1371/journal.pone.0115812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ao MX, Wang W, Li XM, Hou ZQ, Huang C (2013) Changes of dynamic visual acuity after phacoemulsification combined with intraocular lens implantation. Zhonghua Yan Ke Za Zhi 49(5):405–409

    PubMed  Google Scholar 

  3. Cheng CY, Yen MY, Chen SJ, Kao SC, Hsu WM, Liu JH (2001) Visual acuity and contrast sensitivity in different types of posterior capsule opacification. J Cataract Refract Surg 27(7):1055–1060. https://doi.org/10.1016/s0886-3350(00)00867-1

    Article  CAS  PubMed  Google Scholar 

  4. Denison RN, Vu AT, Yacoub E, Feinberg DA, Silver MA (2014) Functional mapping of the magnocellular and parvocellular subdivisions of human LGN. Neuroimage 102 Pt 2:358–369. https://doi.org/10.1016/j.neuroimage.2014.07.019

    Article  PubMed  Google Scholar 

  5. Fang Y, Xixia D, Jin L, Lei L, Pingjun C, Hongfang Z, Yun-E Z (2019) Relationship of posterior capsular opacification and capsular bend type investigation based on swept-source optical coherence tomography. Curr Eye Res. https://doi.org/10.1080/02713683.2019.1645183

    Article  PubMed  Google Scholar 

  6. Geer I, Robertson KM (1993) Measurement of central and peripheral dynamic visual acuity thresholds during ocular pursuit of a moving target. Optom Vis Sci 70(7):552–560

    CAS  PubMed  Google Scholar 

  7. Glacet-Bernard A, Brahim R, Mokhtari O, Quentel G, Coscas G (1993) Retinal detachment following posterior capsulotomy using Nd:YAG laser. Retrospective study of 144 capsulotomies. J fr Ophtalmol 16(2):87–94

    CAS  PubMed  Google Scholar 

  8. Goodhew SC, Boal HL, Edwards M (2014) A magnocellular contribution to conscious perception via temporal object segmentation. J Exp Psychol Hum Percept Perform 40(3):948–959. https://doi.org/10.1037/a0035769

    Article  PubMed  Google Scholar 

  9. Grzybowski A, Kanclerz P (2018) Does Nd:YAG capsulotomy increase the risk of retinal detachment? Asia Pac J Ophthalmol (Phila) 7(5):339–344. https://doi.org/10.22608/APO.2018275

    Article  Google Scholar 

  10. Guclu U, van Gerven MA (2015) Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J Neurosci 35(27):10005–10014. https://doi.org/10.1523/JNEUROSCI.5023-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hall CM, McAnany JJ (2017) Luminance noise as a novel approach for measuring contrast sensitivity within the magnocellular and parvocellular pathways. J Vis 17(8):5. https://doi.org/10.1167/17.8.5

    Article  PubMed  PubMed Central  Google Scholar 

  12. He W, Du Y, Yu J, Lu Y, Zhu X (2019) Associations between macular sensitivity and fixation in pseudophakic children after congenital cataract surgery. Curr Eye Res. https://doi.org/10.1080/02713683.2019.1629593

    Article  PubMed  Google Scholar 

  13. Hirano M, Hutchings N, Simpson T, Dalton K (2017) Validity and repeatability of a novel dynamic visual acuity system. Optom Vis Sci 94(5):616–625. https://doi.org/10.1097/OPX.0000000000001065

    Article  PubMed  Google Scholar 

  14. Kaindlstorfer C, Kneifl M, Reinelt P, Schonherr U (2018) Rotation of a toric intraocular lens from neodymium:YAG laser posterior capsulotomy. J Cataract Refract Surg 44(4):510–511. https://doi.org/10.1016/j.jcrs.2018.02.018

    Article  PubMed  Google Scholar 

  15. Koide Y, Ueki Y, Asai Y, Morimoto H, Asai H, Johnson EG, Lohman EB, Sakuma E, Mizutani J, Ueki T, Wada I (2019) Differences in postural stability and dynamic visual acuity among healthy young adults in relation to sports activity: a cross sectional study. J Phys Ther Sci 31(1):53–56. https://doi.org/10.1589/jpts.31.53

    Article  PubMed  PubMed Central  Google Scholar 

  16. Li H, Song H, Yuan X, Li J, Tang H (2019) miR-30a reverses TGF-beta2-induced migration and EMT in posterior capsular opacification by targeting Smad2. Mol Biol Rep 46(4):3899–3907. https://doi.org/10.1007/s11033-019-04833-4

    Article  CAS  PubMed  Google Scholar 

  17. Lu C, Yu S, Song H, Zhao Y, Xie S, Tang X, Yuan X (2019) Posterior capsular opacification comparison between morphology and objective visual function. BMC Ophthalmol 19(1):40. https://doi.org/10.1186/s12886-019-1051-z

    Article  PubMed  PubMed Central  Google Scholar 

  18. Luo AJ, Chang WF, Xin ZR, Ling H, Li JJ, Dai PP, Deng XT, Zhang L, Li SG (2018) Diagnosis related group grouping study of senile cataract patients based on E-CHAID algorithm. Int J Ophthalmol 11(2):308–313. https://doi.org/10.18240/ijo.2018.02.21

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lg M, Zm J (2002) Contrast sensitivity in a dynamic environment: effects of target conditions and visual impairment. Hum Factors J Hum Factors Ergonom Soc 44(1):120–132. https://doi.org/10.1518/0018720024494784

    Article  Google Scholar 

  20. Ma B, Jing R, Liu J, Qi T, Pei C (2019) Gremlin is a potential target for posterior capsular opacification. Cell Cycle 18(15):1714–1726. https://doi.org/10.1080/15384101.2019.1632125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mastromonaco C, Balazsi M, Zoroquiain P, Esposito E, Coblentz J, Logan P, Burnier MN (2018) Removing subjective post-mortem grading from posterior capsular opacification: a new automated detector opacification software. Ados Curr Eye Res 43(11):1362–1368. https://doi.org/10.1080/02713683.2018.1501071

    Article  PubMed  Google Scholar 

  22. McMillin JC, Rocha KM, Barnwell EL, Haddad JS, Waring IG (2019) Objective evaluation of vision quality in pseudophakic patients with posterior capsular opacification using double-pass retinal imaging. ARQ Bras Oftalmol 82(3):189–194. https://doi.org/10.5935/0004-2749.20190039

    Article  PubMed  Google Scholar 

  23. Mucke S, Strang NC, Aydin S, Mallen EA, Seidel D, Manahilov V (2013) Spatial frequency selectivity of visual suppression during convergence eye movements. Vision Res 89:96–101. https://doi.org/10.1016/j.visres.2013.07.008

    Article  PubMed  Google Scholar 

  24. Owsley C, Swain T, Liu R, McGwin GJ, Kwon MY (2020) Association of photopic and mesopic contrast sensitivity in older drivers with risk of motor vehicle collision using naturalistic driving data. BMC Ophthalmol 20(1):47. https://doi.org/10.1186/s12886-020-1331-7

    Article  PubMed  PubMed Central  Google Scholar 

  25. Parede TR, Torricelli AA, Mukai A, Vieira NM, Bechara SJ (2013) Quality of vision in refractive and cataract surgery, indirect measurers: review article. ARQ Bras Oftalmol 76(6):386–390

    PubMed  Google Scholar 

  26. Schaumberg DA, Dana MR, Christen WG, Glynn RJ (1998) A systematic overview of the incidence of posterior capsule opacification. Ophthalmology 105(7):1213–1221. https://doi.org/10.1016/S0161-6420(98)97023-3

    Article  CAS  PubMed  Google Scholar 

  27. Su Z, Ye P, Lin J, Zhang L, Huang X (2019) Minimal surgery achieved good visual acuity in selected patients with magnetic intravitreal foreign body and traumatic cataract. BMC Ophthalmol 19(1):54. https://doi.org/10.1186/s12886-019-1065-6

    Article  PubMed  PubMed Central  Google Scholar 

  28. Tan JC, Spalton DJ, Arden GB (1999) The effect of neodymium: YAG capsulotomy on contrast sensitivity and the evaluation of methods for its assessment. Ophthalmology 106(4):703–709. https://doi.org/10.1016/S0161-6420(99)90154-9

    Article  CAS  PubMed  Google Scholar 

  29. van Bree MC, van den Berg TJ, Zijlmans BL (2013) Posterior capsule opacification severity, assessed with straylight measurement, as main indicator of early visual function deterioration. Ophthalmology 120(1):20–33. https://doi.org/10.1016/j.ophtha.2012.07.050

    Article  PubMed  Google Scholar 

  30. van Bree MC, Zijlmans BL, van den Berg TJ (2008) Effect of neodymium:YAG laser capsulotomy on retinal straylight values in patients with posterior capsule opacification. J Cataract Refract Surg 34(10):1681–1686. https://doi.org/10.1016/j.jcrs.2008.06.014

    Article  PubMed  Google Scholar 

  31. Wang SY, Stem MS, Oren G, Shtein R, Lichter PR (2017) Patient-centered and visual quality outcomes of premium cataract surgery: a systematic review. Eur J Ophthalmol 27(4):387–401. https://doi.org/10.5301/ejo.5000978

    Article  PubMed  Google Scholar 

  32. Zhang H, Wang J (2017) Visual quality assessment of posterior capsule opacification using optical quality analysis system (OQAS). J Ophthalmol 2017:9852195. https://doi.org/10.1155/2017/9852195

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZL was involved in data collection and analysis and writing the manuscript, SG and HP helped in data collection, WW contributed to design, and ZH was involved in design and supervision.

Corresponding author

Correspondence to Zhiqiang Hou.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Hou, Z., Ge, S. et al. Vision function of pseudophakic eyes with posterior capsular opacification under different speed and spatial frequency. Int Ophthalmol 40, 3491–3500 (2020). https://doi.org/10.1007/s10792-020-01536-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01536-9

Keywords

Navigation