Skip to main content

Advertisement

Log in

Recent advances in the management of non-infectious posterior uveitis

  • Review
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

To review the current regimens and novel therapeutic modalities in various stages of research and development for the management of non-infectious posterior uveitis (NIPU).

Methods

We performed a thorough review of current literature using PubMed, Google Scholar and Clinicaltrials.gov to identify the published literature about the available therapeutics and novel drugs/therapies in different stages of clinical trials.

Results

The current management regimen for non-infectious posterior uveitis includes corticosteroids, immunomodulatory therapies and anti-metabolites. However, NIPU requires long-term management for efficacious remission of the disease and to prevent disease relapse. Long-term safety issues associated with steroids have led to efforts to develop novel therapeutic agents including biological response modulators and immunosuppressants. The current therapeutic agents in various stages of development include calcineurin inhibitors, biologic response modifiers and a more a comprehensive modalities like ocular gene therapy as well as novel drug delivery mechanisms for higher bioavailability to the target tissues, with minimal systemic effects.

Conclusion

Novel efficacious therapeutic modalities under development will help overcome the challenges associated with the traditional therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Harthan JS, Opitz DL, Fromstein SR, Morettin CE (2016) Diagnosis and treatment of anterior uveitis: optometric management. Clin Optom 8:23–35

    Article  Google Scholar 

  2. Lee RW, Nicholson LB, Sen HN et al (2014) Autoimmune and autoinflammatory mechanisms in uveitis. Semin Immunopathol 36:581–594

    Article  CAS  Google Scholar 

  3. Vavvas D, Foster CS (2004) Immunomodulatory medications in uveitis. Int Ophthalmol Clin 44:187–203

    Article  Google Scholar 

  4. Durrani OM, Tehrani NN, Marr JE et al (2004) Degree, duration, and causes of visual loss in uveitis. Br J Ophthalmol 88:1159–1162

    Article  CAS  Google Scholar 

  5. Miserocchi E, Modorati G, Mosconi P et al (2010) Quality of life in patients with uveitis on chronic systemic immunosuppressive treatment. Ocul Immunol Inflamm 18:297–304. https://doi.org/10.3109/09273941003637510

    Article  PubMed  Google Scholar 

  6. Jabs DA, Nussenblatt RB, Rosenbaum JT et al (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol 140:509–516. https://doi.org/10.1016/j.ajo.2005.03.057

    Article  PubMed  Google Scholar 

  7. Rosenbaum JT, Bodaghi B, Couto C et al (2019) New observations and emerging ideas in diagnosis and management of non-infectious uveitis: a review. Semin Arthritis Rheum 49:438–445

    Article  Google Scholar 

  8. Dick AD, Tundia N, Sorg R et al (2016) Risk of ocular complications in patients with noninfectious intermediate uveitis, posterior uveitis, or panuveitis. Ophthalmology 123:655–662. https://doi.org/10.1016/j.ophtha.2015.10.028

    Article  PubMed  Google Scholar 

  9. Barry RJ, Nguyen QD, Wlee R et al (2014) Pharmacotherapy for uveitis: current management and emerging therapy. Clin Ophthalmol 8:1891

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Tugal-Tutkun I, Kadayifcilar S, Khairallah M et al (2017) Safety and efficacy of gevokizumab in patients with Behçet’s disease uveitis: results of an exploratory phase 2 study. Ocul Immunol Inflamm 25:62–70. https://doi.org/10.3109/09273948.2015.1092558

    Article  CAS  Google Scholar 

  11. Cann M, Ramanan AV, Crawford A et al (2018) Outcomes of non-infectious paediatric uveitis in the era of biologic therapy. Pediatr Rheumatol. https://doi.org/10.1186/s12969-018-0266-5

    Article  Google Scholar 

  12. Shahab MA, Mir TA, Zafar S (2019) Optimising drug therapy for non-infectious uveitis. Int Ophthalmol 39:1633–1650

    Article  Google Scholar 

  13. Babu K, Mahendradas P (2013) Medical management of uveitis—current trends. Indian J Ophthalmol 61(6):277

    Article  Google Scholar 

  14. Nozik RA (1972) Periocular injection of steroids. Trans Am Acad Ophthalmol Otolaryngol. https://doi.org/10.1016/S0002-7154(72)30072-4

    Article  PubMed  Google Scholar 

  15. Gaudio PA (2004) A review of evidence guiding the use of corticosteroids in the treatment of intraocular inflammation. Ocul Immunol Inflamm 12(3):169–92

    Article  CAS  Google Scholar 

  16. Weijtens O, Schoemaker RC, Lentjes EGWM et al (2000) Dexamethasone concentration in the subretinal fluid after a subconjunctival injection, a peribulbar injection, or an oral dose. Ophthalmology. https://doi.org/10.1016/S0161-6420(00)00344-4

    Article  PubMed  Google Scholar 

  17. Carnahan MC, Goldstein DA (2000) Ocular complications of topical, peri-ocular, and systemic corticosteroids. Curr Opin Ophthalmol. https://doi.org/10.1097/00055735-200012000-00016

    Article  PubMed  Google Scholar 

  18. Cunningham MA, Edelman JL, Kaushal S (2008) Intravitreal steroids for macular edema: the past, the present, and the future. Surv Ophthalmol. https://doi.org/10.1016/j.survophthal.2007.12.005

    Article  PubMed  Google Scholar 

  19. Jager RD, Aiello LP, Patel SC, Cunningham ET (2004) Risks of intravitreous injection: a comprehensive review. Retina 24(5):676–98

    Article  Google Scholar 

  20. Ciulla TA, Walker JD, Fong DS, Criswell MH (2004) Corticosteroids in posterior segment disease: an update on new delivery systems and new indications. Curr Opin Ophthalmol 15:211–220. https://doi.org/10.1097/01.icu.0000120711.35941.76

    Article  PubMed  Google Scholar 

  21. Jaffe GJ, Ben-nun J, Guo H et al (2000) Fluocinolone acetonide sustained drug delivery devine to treat severe uveitis. Ophthalmology. https://doi.org/10.1016/S0161-6420(00)00466-8

    Article  PubMed  Google Scholar 

  22. Sallam AB, Kirkland KA, Barry R, Soliman MK, Ali TKLS (2018) A review of antimicrobial therapy for infectious uveitis of the posterior segment. Med Hypothesis Discov Innov Ophthalmol 7(4):140

    PubMed  PubMed Central  Google Scholar 

  23. Callanan DG, Jaffe GJ, Martin DF et al (2008) Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Arch Ophthalmol. https://doi.org/10.1001/archopht.126.9.1191

    Article  PubMed  Google Scholar 

  24. Kane FE, Burdan J, Cutino A, Green KE (2008) IluvienTM: a new sustained delivery technology for posterior eye disease. Expert Opin Drug Deliv 5:1039–1046

    Article  CAS  Google Scholar 

  25. Kempen JH, Altaweel MM, Holbrook JT et al (2011) Randomized comparison of systemic anti-inflammatory therapy versus fluocinolone acetonide implant for intermediate, posterior, and panuveitis: the multicenter uveitis steroid treatment trial. Ophthalmology 118:1916–1926. https://doi.org/10.1016/j.ophtha.2011.07.027

    Article  PubMed  PubMed Central  Google Scholar 

  26. Jaffe GJ, Lin P, Keenan RT et al (2016) Injectable fluocinolone acetonide long-acting implant for noninfectious intermediate uveitis, posterior uveitis, and panuveitis: two-year results. Ophthalmology 123:1940–1948. https://doi.org/10.1016/j.ophtha.2016.05.025

    Article  PubMed  Google Scholar 

  27. Lowder C, Belfort R, Lightman S et al (2011) Dexamethasone intravitreal implant for noninfectious intermediate or posterior uveitis. Arch Ophthalmol 129:545–553. https://doi.org/10.1001/archophthalmol.2010.339

    Article  PubMed  Google Scholar 

  28. Palla S, Biswas J, Nagesha C (2015) Efficacy of Ozurdex implant in treatment of noninfectious intermediate uveitis. Indian J Ophthalmol 63:767. https://doi.org/10.4103/0301-4738.171505

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tomkins-Netzer O, Taylor SRJ, Bar A et al (2014) Treatment with repeat dexamethasone implants results in long-term disease control in eyes with noninfectious uveitis. Ophthalmology 121:1649–1654. https://doi.org/10.1016/j.ophtha.2014.02.003

    Article  PubMed  Google Scholar 

  30. Pavesio C, Zierhut M, Bairi K et al (2010) Evaluation of an intravitreal fluocinolone acetonide implant versus standard systemic therapy in noninfectious posterior uveitis. Ophthalmology 117:567–575.e1. https://doi.org/10.1016/j.ophtha.2009.11.027

    Article  PubMed  Google Scholar 

  31. Arcinue CA, Cerón OM, Foster CS (2013) A comparison between the fluocinolone acetonide (Retisert) and dexamethasone (Ozurdex) intravitreal implants in uveitis. J Ocul Pharmacol Ther. https://doi.org/10.1089/jop.2012.0180

    Article  PubMed  Google Scholar 

  32. Sadiq MA, Agarwal A, Hassan M et al (2015) Therapies in development for non-infectious uveitis. Curr Mol Med 15:565–577. https://doi.org/10.2174/1566524015666150731103847

    Article  CAS  PubMed  Google Scholar 

  33. LeHoang P (2012) The gold standard of noninfectious uveitis: corticosteroids. In: Developments in ophthalmology. Karger Publishers, pp 7–28

  34. McGhee CNJ (1992) Pharmacokinetics of ophthalmic corticosteroids. Br J Ophthalmol 76(11):681

    Article  CAS  Google Scholar 

  35. Jabs DA, Rosenbaum JT, Foster CS et al (2000) Guidelines for the use of immunosuppressive drugs in patients with ocular inflammatory disorders: recommendations of an expert panel. Am J Ophthalmol. https://doi.org/10.1016/S0002-9394(00)00659-0

    Article  PubMed  Google Scholar 

  36. Dick AD, Rosenbaum JT, Al-Dhibi HA et al (2018) Guidance on noncorticosteroid systemic immunomodulatory therapy in noninfectious uveitis: Fundamentals Of Care for UveitiS (FOCUS) Initiative. Ophthalmology 125:757–773

    Article  Google Scholar 

  37. Nussenblatt RB, Palestine AG, Chan C-C (1985) Cyclosporine therapy for uveitis: long-term followup. J Ocul Pharmacol Ther 1:369–382. https://doi.org/10.1089/jop.1985.1.369

    Article  CAS  Google Scholar 

  38. Javadi MA, Feizi S (2011) Dry eye syndrome. J Ophthalmic Vis Res 6:192–198

    PubMed  PubMed Central  Google Scholar 

  39. Lee SH, Chung H, Yu HG (2012) Clinical outcomes of cyclosporine treatment for noninfectious uveitis. Korean J Ophthalmol 26:21–25. https://doi.org/10.3341/kjo.2012.26.1.21

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kaçmaz RO, Kempen JH, Newcomb C et al (2010) Cyclosporine for ocular inflammatory diseases. Ophthalmology 117:576–584. https://doi.org/10.1016/j.ophtha.2009.08.010

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kilmartin DJ, Forrester JV, Dick AD (1998) Cyclosporin A therapy in refractory non-infectious childhood uveitis. Br J Ophthalmol 82:737–742. https://doi.org/10.1136/bjo.82.7.737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilger BC, Wilkie DA, Davidson MG, Allen JB (2001) Use of an intravitreal sustained-release cyclosporine delivery device for treatment of equine recurrent uveitis. Am J Vet Res 62:1892–1896. https://doi.org/10.2460/ajvr.2001.62.1892

    Article  CAS  PubMed  Google Scholar 

  43. Jaffe GJ, Yang C-S, Wang X-C et al (1998) Intravitreal sustained-release cyclosporine in the treatment of experimental uveitis. Ophthalmology 105:46–56. https://doi.org/10.1016/S0161-6420(98)91176-9

    Article  CAS  PubMed  Google Scholar 

  44. Fung JJ (2004) Tacrolimus and transplantation: a decade in review. Transplantation 77(9):S41–3

    Article  CAS  Google Scholar 

  45. Beck LA (2005) The efficacy and safety of tacrolimus ointment: a clinical review. J Am Acad Dermatol 53(2):S165–70

    Article  Google Scholar 

  46. Group TUSMFLS (1994) A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 331:1110–1115. https://doi.org/10.1056/NEJM199410273311702

    Article  Google Scholar 

  47. Hogan AC, McAvoy CE, Dick AD, Lee RWJ (2007) Long-term efficacy and tolerance of tacrolimus for the treatment of uveitis. Ophthalmology 114:1000–1006. https://doi.org/10.1016/j.ophtha.2007.01.026

    Article  PubMed  Google Scholar 

  48. Durrani K, Zakka FR, Ahmed M et al (2011) Systemic therapy with conventional and novel immunomodulatory agents for ocular inflammatory disease. Surv Ophthalmol 56(6):474–510

    Article  Google Scholar 

  49. Yazici H, Pazarli H, Barnes CG et al (1990) A controlled trial of azathioprine in Behçet’s syndrome. N Engl J Med 322:281–285. https://doi.org/10.1056/NEJM199002013220501

    Article  CAS  PubMed  Google Scholar 

  50. Mili-Boussen I, Zitouni M, Ammous I et al (2015) Azathioprine for glucocorticoid resistant noninfectious uveitis. Tunis Med 93:158–163

    PubMed  Google Scholar 

  51. Teoh SC, Hogan AC, Dick AD, Lee RWJ (2008) Mycophenolate mofetil for the treatment of uveitis. Am J Ophthalmol. https://doi.org/10.1016/j.ajo.2008.03.004

    Article  PubMed  Google Scholar 

  52. Thorne JE, Jabs DA, Qazi FA et al (2005) Mycophenolate mofetil therapy for inflammatory eye disease. Ophthalmology 112:1472–1477. https://doi.org/10.1016/j.ophtha.2005.02.020

    Article  PubMed  Google Scholar 

  53. Baltatzis S, Tufail F, Yu EN et al (2003) Mycophenolate mofetil as an immunomodulatory agent in the treatment of chronic ocular inflammatory disorders. Ophthalmology 110:1061–1065. https://doi.org/10.1016/S0161-6420(03)00092-7

    Article  PubMed  Google Scholar 

  54. Singh G, Fries JF, Spitz P, Williams CA (1989) Toxic effects of azathioprine in rheumatoid arthritis. A national post-marketing perspective. Arthritis Rheum 32(7):837–43

    CAS  PubMed  Google Scholar 

  55. Jeong H, Kaplan B (2007) Therapeutic monitoring of mycophenolate mofetil. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.02860806

    Article  PubMed  Google Scholar 

  56. Burmester GR, Kaeley GS, Kavanaugh AF et al (2017) Treatment efficacy and methotrexate-related toxicity in patients with rheumatoid arthritis receiving methotrexate in combination with adalimumab. RMD Open. https://doi.org/10.1136/rmdopen-2017-000465

    Article  PubMed  PubMed Central  Google Scholar 

  57. Martin-Suarez I, D’Cruz D, Mansoor M et al (1997) Immunosuppressive treatment in severe connective tissue diseases: effects of low dose intravenous cyclophosphamide. Ann Rheum Dis. https://doi.org/10.1136/ard.56.8.481

    Article  PubMed  PubMed Central  Google Scholar 

  58. Maya JR, Sadiq MA, Zapata LJ et al (2014) Emerging therapies for noninfectious uveitis: what may be coming to the clinics. J Ophthalmol. https://doi.org/10.1155/2014/310329

    Article  PubMed  PubMed Central  Google Scholar 

  59. Adan A, Mesquida M, Llorenç V (2014) Biologic drugs in noninfectious uveitis: an update. Expert Rev Ophthalmol. https://doi.org/10.1586/17469899.2013.843453

    Article  Google Scholar 

  60. Maini R, St Clair EW, Breedveld F et al (1999) Infliximab (chimeric anti-tumour necrosis factor α monoclonal antibody) versus placebo in rheumatoid arthritis patients receiving concomitant methotrexate: a randomised phase III trial. Lancet. https://doi.org/10.1016/S0140-6736(99)05246-0

    Article  PubMed  Google Scholar 

  61. Pearce DJ, Feldman SR (2007) Update on infliximab: an intravenous biologic therapy for psoriasis. Expert Rev Dermatol. https://doi.org/10.1586/17469872.2.6.707

    Article  Google Scholar 

  62. Rutgeerts P, Sandborn WJ, Feagan BG et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med. https://doi.org/10.1056/NEJMoa050516

    Article  PubMed  Google Scholar 

  63. Papoutsaki M, Osório F, Morais P et al (2013) Infliximab in psoriasis and psoriatic arthritis. BioDrugs. https://doi.org/10.1007/BF03325638

    Article  PubMed  Google Scholar 

  64. Markomichelakis NN, Theodossiadis PG, Pantelia E et al (2004) Infliximab for chronic cystoid macular edema associated with uveitis. Am J Ophthalmol 138:648–650. https://doi.org/10.1016/j.ajo.2004.04.066

    Article  CAS  PubMed  Google Scholar 

  65. Kruh JN, Yang P, Suelves AM, Foster CS (2014) Infliximab for the treatment of refractory noninfectious uveitis: a study of 88 patients with long-term follow-up. Ophthalmology 121:358–364. https://doi.org/10.1016/j.ophtha.2013.07.019

    Article  PubMed  Google Scholar 

  66. Levy-Clarke G, Jabs DA, Read RW et al (2014) Expert panel recommendations for the use of anti-tumor necrosis factor biologic agents in patients with ocular inflammatory disorders. Ophthalmology 121:785–796.e3. https://doi.org/10.1016/j.ophtha.2013.09.048

    Article  PubMed  Google Scholar 

  67. Kahn P, Weiss M, Imundo LF, Levy DM (2006) Favorable response to high-dose infliximab for refractory childhood uveitis. Ophthalmology 113:860–864.e2. https://doi.org/10.1016/j.ophtha.2006.01.005

    Article  PubMed  Google Scholar 

  68. Pritchard C, Nadarajah K (2004) Tumour necrosis factor alpha inhibitor treatment for sarcoidosis refractory to conventional treatments: a report of five patients. Ann Rheum Dis 63:318–320. https://doi.org/10.1136/ard.2002.004226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rispo A, Scarpa R, Di GE et al (2005) Infliximab in the treatment of extra-intestinal manifestations of Crohn’s disease. Scand J Rheumatol 34:387–391. https://doi.org/10.1080/03009740510026698

    Article  CAS  PubMed  Google Scholar 

  70. Artornsombudh P, Gevorgyan O, Payal A et al (2013) Infliximab treatment of patients with birdshot retinochoroidopathy. Ophthalmology 120:588–592. https://doi.org/10.1016/j.ophtha.2012.05.048

    Article  PubMed  Google Scholar 

  71. Sfikakis PP (2010) The first decade of biologic TNF antagonists in clinical practice: lessons learned, unresolved issues and future directions. TNF Pathophysiol 11:180–210. https://doi.org/10.1159/000289205

    Article  CAS  Google Scholar 

  72. Markomichelakis N, Delicha E, Masselos S, Sfikakis PP (2012) Intravitreal infliximab for sight-threatening relapsing uveitis in Behçet disease: a pilot study in 15 patients. Am J Ophthalmol 154:534–541.e1. https://doi.org/10.1016/j.ajo.2012.03.035

    Article  CAS  PubMed  Google Scholar 

  73. Farvardin M, Afarid M, Shahrzad S (2012) Long-term effects of intravitreal infliximab for treatment of sight-threatening chronic noninfectious uveitis. J Ocul Pharmacol Ther 28:628–631. https://doi.org/10.1089/jop.2011.0199

    Article  CAS  PubMed  Google Scholar 

  74. Giganti M, Beer PM, Lemanski N et al (2010) Adverse events after intravitreal infliximab (Remicade). Retina 30:71–80. https://doi.org/10.1097/IAE.0b013e3181bcef3b

    Article  PubMed  Google Scholar 

  75. Tan HY, Agarwal A, Lee CS et al (2016) Management of noninfectious posterior uveitis with intravitreal drug therapy. Clin Ophthalmol 10:1983–2020. https://doi.org/10.2147/OPTH.S89341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weinblatt ME, Keystone EC, Furst DE et al (2003) Adalimumab, a fully human anti-tumor necrosis factor α monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. https://doi.org/10.1002/art.10697

    Article  PubMed  Google Scholar 

  77. Menter A, Tyring SK, Gordon K et al (2008) Adalimumab therapy for moderate to severe psoriasis: a randomized, controlled phase III trial. J Am Acad Dermatol. https://doi.org/10.1016/j.jaad.2007.09.010

    Article  PubMed  Google Scholar 

  78. Navarro-Sarabia F, Ariza-Ariza R, Hernández-Cruz B, Villanueva I (2006) Adalimumab for treating rheumatoid arthritis. J Rheumatol. https://doi.org/10.1002/14651858.cd005113.pub2

    Article  PubMed  Google Scholar 

  79. Kripke C (2006) Adalimumab for rheumatoid arthritis? Am Fam Physician 73(3):435

    PubMed  Google Scholar 

  80. Jaffe GJ, Dick AD, Brézin AP et al (2016) Adalimumab in patients with active noninfectious uveitis. N Engl J Med 375:932–943. https://doi.org/10.1056/NEJMoa1509852

    Article  CAS  PubMed  Google Scholar 

  81. Nguyen QD, Merrill PT, Jaffe GJ et al (2016) Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet (London, England) 388:1183–1192. https://doi.org/10.1016/S0140-6736(16)31339-3

    Article  CAS  Google Scholar 

  82. LaMattina KC, Goldstein DA (2017) Adalimumab for the treatment of uveitis. Expert Rev Clin Immunol 13:181–188. https://doi.org/10.1080/1744666X.2017.1288097

    Article  CAS  PubMed  Google Scholar 

  83. Suhler EB, Adán A, Brézin AP et al (2018) Safety and efficacy of adalimumab in patients with noninfectious uveitis in an ongoing open-label study: VISUAL III. Ophthalmology 125:1075–1087. https://doi.org/10.1016/j.ophtha.2017.12.039

    Article  PubMed  Google Scholar 

  84. Hamam RN, Barikian AW, Antonios RS et al (2016) Intravitreal adalimumab in active noninfectious uveitis: a pilot study. Ocul Immunol Inflamm 24:319–326. https://doi.org/10.3109/09273948.2014.990041

    Article  CAS  PubMed  Google Scholar 

  85. Kheir WJ, Mehanna C-J, Abdul Fattah M et al (2018) Intravitreal adalimumab for the control of breakthrough intraocular inflammation. Ocul Immunol Inflamm 26:1206–1211. https://doi.org/10.1080/09273948.2017.1335756

    Article  CAS  PubMed  Google Scholar 

  86. Fabiani C, Vitale A, Rigante D et al (2019) Comparative efficacy between adalimumab and infliximab in the treatment of non-infectious intermediate uveitis, posterior uveitis, and panuveitis: a retrospective observational study of 107 patients. Clin Rheumatol 38:407–415. https://doi.org/10.1007/s10067-018-4228-6

    Article  PubMed  Google Scholar 

  87. Weinblatt ME, Kremer JM, Bankhurst AD et al (1999) A trial of etanercept, a recombinant tumor necrosis factor receptor: Fc fusion protein, in patients with rheumatoid arthritis receiving methotrexate. N Engl J Med. https://doi.org/10.1056/NEJM199901283400401

    Article  PubMed  Google Scholar 

  88. Lethaby A, Lopez-Olivo MA, Maxwell L et al (2013) Etanercept for the treatment of rheumatoid arthritis. Cochrane Database Syst Rev 5:CD004525. https://doi.org/10.1002/14651858.CD004525.pub

    Article  Google Scholar 

  89. Leonardi CL, Powers JL, Matheson RT et al (2003) Etanercept as monotherapy in patients with psoriasis. N Engl J Med. https://doi.org/10.1056/NEJMoa030409

    Article  PubMed  Google Scholar 

  90. Foster CS, Tufail F, Waheed NK et al (2003) Efficacy of etanercept in preventing relapse of uveitis controlled by methotrexate. Arch Ophthalmol (Chicago, Ill 1960) 121:437–440. https://doi.org/10.1001/archopht.121.4.437

    Article  CAS  Google Scholar 

  91. Galor A, Perez VL, Hammel JP, Lowder CY (2006) Differential effectiveness of etanercept and infliximab in the treatment of ocular inflammation. Ophthalmology 113:2317–2323. https://doi.org/10.1016/j.ophtha.2006.04.038

    Article  PubMed  Google Scholar 

  92. Lim LL, Fraunfelder FW, Rosenbaum JT (2007) Do tumor necrosis factor inhibitors cause uveitis? A registry-based study. Arthritis Rheum 56:3248–3252. https://doi.org/10.1002/art.22918

    Article  CAS  PubMed  Google Scholar 

  93. Abbate A, Salloum FN, Vecile E et al (2008) Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation. https://doi.org/10.1161/CIRCULATIONAHA.107.740233

    Article  PubMed  Google Scholar 

  94. (2020) Neonatal Onset Multisystem Inflammatory Disease (NOMID or CINCA) NLRP3 Gene

  95. Lim W-K, Fujimoto C, Ursea R et al (2005) Suppression of immune-mediated ocular inflammation in mice by interleukin 1 receptor antagonist administration. Arch Ophthalmol (Chicago, Ill 1960) 123:957–963. https://doi.org/10.1001/archopht.123.7.957

    Article  CAS  Google Scholar 

  96. Botsios C, Sfriso P, Furlan A et al (2008) Resistant Behçet disease responsive to anakinra. Ann Intern Med 149:284–286. https://doi.org/10.7326/0003-4819-149-4-200808190-00018

    Article  PubMed  Google Scholar 

  97. Teoh SCB, Sharma S, Hogan A et al (2007) Tailoring biological treatment: anakinra treatment of posterior uveitis associated with the CINCA syndrome. Br J Ophthalmol 91:263–264. https://doi.org/10.1136/bjo.2006.0101477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Hassan M, Karkhur S, Bae JH et al (2019) New therapies in development for the management of non-infectious uveitis: a review. Clin Experiment Ophthalmol 47:396–417. https://doi.org/10.1111/ceo.13511

    Article  PubMed  Google Scholar 

  99. Schumacher HR, Evans RR, Saag KG et al (2012) Rilonacept (interleukin-1 trap) for prevention of gout flares during initiation of uric acid-lowering therapy: results from a phase III randomized, double-blind, placebo-controlled, confirmatory efficacy study. Arthritis Care Res. https://doi.org/10.1002/acr.21690

    Article  Google Scholar 

  100. Kapur S, Bonk ME (2009) Rilonacept (arcalyst), an interleukin-1 trap for the treatment of cryopyrin-associated periodic syndromes. Pharm Ther 34:138–141

    Google Scholar 

  101. Bittencourt MG, Sepah YJ, Do DV et al (2012) New treatment options for noninfectious uveitis. New Treat Noninfectious Uveitis 51:134–161. https://doi.org/10.1159/000336338

    Article  CAS  Google Scholar 

  102. Dhimolea E (2010) Canakinumab. MAbs 2:3–13

    Article  Google Scholar 

  103. (2020) FDA approves ilaris for rare juvenile arthritis. Medscape

  104. Hirano M, Seguchi J, Yamamura M et al (2015) Successful resolution of stromal keratitis and uveitis using canakinumab in a patient with chronic infantile neurologic, cutaneous, and articular syndrome: a case study. J Ophthalmic Inflamm Infect. https://doi.org/10.1186/s12348-015-0065-9

    Article  PubMed  PubMed Central  Google Scholar 

  105. Fabiani C, Vitale A, Emmi G et al (2017) Interleukin (IL)-1 inhibition with anakinra and canakinumab in Behçet’s disease-related uveitis: a multicenter retrospective observational study. Clin Rheumatol 36:191–197. https://doi.org/10.1007/s10067-016-3506-4

    Article  PubMed  Google Scholar 

  106. Simonini G, Xu Z, Caputo R et al (2013) Clinical and transcriptional response to the long-acting interleukin-1 blocker canakinumab in Blau syndrome-related uveitis. Arthritis Rheum 65:513–518. https://doi.org/10.1002/art.37776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sota J, Vitale A, Insalaco A et al (2018) Safety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational study. Clin Rheumatol 37:2233–2240. https://doi.org/10.1007/s10067-018-4119-x

    Article  PubMed  Google Scholar 

  108. Tugal-Tutkun I, Pavesio C, De Cordoue A et al (2018) Use of gevokizumab in patients with Behçet’s disease uveitis: an international, randomized, double-masked, placebo-controlled study and open-label extension study. Ocul Immunol Inflamm 26:1023–1033. https://doi.org/10.1080/09273948.2017.1421233

    Article  CAS  PubMed  Google Scholar 

  109. Kappos L, Wiendl H, Selmaj K et al (2015) Daclizumab HYP versus interferon beta-1a in relapsing multiple sclerosis. N Engl J Med. https://doi.org/10.1056/NEJMoa1501481

    Article  PubMed  Google Scholar 

  110. Noël C, Abramowicz D, Durand D et al (2009) Daclizumab versus antithymocyte globulin in high-immunological-risk renal transplant recipients. J Am Soc Nephrol. https://doi.org/10.1681/ASN.2008101037

    Article  PubMed  PubMed Central  Google Scholar 

  111. Nussenblatt RB, Fortin E, Schiffman R et al (1999) Treatment of noninfectious intermediate and posterior uveitis with the humanized anti-Tac mAb: a phase I/II clinical trial. Proc Natl Acad Sci U S A 96:7462–7466

    Article  CAS  Google Scholar 

  112. Nussenblatt RB, Peterson JS, Foster CS et al (2005) Initial evaluation of subcutaneous daclizumab treatments for noninfectious uveitis: a multicenter noncomparative interventional case series. Ophthalmology 112:764–770. https://doi.org/10.1016/j.ophtha.2004.12.034

    Article  PubMed  Google Scholar 

  113. Wroblewski K, Sen HN, Yeh S et al (2011) Long-term daclizumab therapy for the treatment of noninfectious ocular inflammatory disease. Can J Ophthalmol 46:322–328. https://doi.org/10.1016/j.jcjo.2011.06.008

    Article  PubMed  PubMed Central  Google Scholar 

  114. (2020) MS drug daclizumab (zinbryta) pulled from the market. Medscape

  115. Hueber W, Sands BE, Lewitzky S et al (2012) Secukinumab, a human anti-IL-17A monoclonal antibody, for moderate to severe Crohn’s disease: unexpected results of a randomised, double-blindplacebo- controlled trial. Gut. https://doi.org/10.1136/gutjnl-2011-301668

    Article  PubMed  PubMed Central  Google Scholar 

  116. Fala L (2016) Cosentyx (secukinumab): first IL-17A antagonist receives FDA approval for moderate-to-severe plaque psoriasis. Am Heal Drug Benefits 9:60–63

    Google Scholar 

  117. Hueber W, Patel DD, Dryja T et al (2010) Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med 2:52ra72. https://doi.org/10.1126/scitranslmed.3001107

    Article  CAS  PubMed  Google Scholar 

  118. Dick AD, Tugal-Tutkun I, Foster S et al (2013) Secukinumab in the treatment of noninfectious uveitis: results of three randomized, controlled clinical trials. Ophthalmology 120:777–787. https://doi.org/10.1016/j.ophtha.2012.09.040

    Article  PubMed  Google Scholar 

  119. Fobelo Lozano MJ, Serrano Giménez R, Castro Fernández M (2018) Emergence of inflammatory bowel disease during treatment with secukinumab. J Crohns Colitis 12:1131–1133. https://doi.org/10.1093/ecco-jcc/jjy063

    Article  PubMed  Google Scholar 

  120. Stone JH, Tuckwell K, Dimonaco S et al (2017) Trial of tocilizumab in giant-cell arteritis. N Engl J Med. https://doi.org/10.1056/NEJMoa1613849

    Article  PubMed  PubMed Central  Google Scholar 

  121. Touhami S, Diwo E, Sève P et al (2019) Expert opinion on the use of biological therapy in non-infectious uveitis. Expert Opin Biol Ther 19:477–490. https://doi.org/10.1080/14712598.2019.1595578

    Article  CAS  PubMed  Google Scholar 

  122. Dipasquale V, Atteritano M, Fresta J et al (2019) Tocilizumab for refractory uveitis associated with juvenile idiopathic arthritis: a report of two cases. J Clin Pharm Ther 44:482–485. https://doi.org/10.1111/jcpt.12821

    Article  PubMed  Google Scholar 

  123. Oshitari T, Kajita F, Tobe A et al (2012) Refractory uveitis in patient with castleman disease successfully treated with tocilizumab. Case Rep Ophthalmol Med 2012:968180. https://doi.org/10.1155/2012/968180

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hirano T, Ohguro N, Hohki S et al (2012) A case of Behçet’s disease treated with a humanized anti-interleukin-6 receptor antibody, tocilizumab. Mod Rheumatol 22:298–302. https://doi.org/10.1007/s10165-011-0497-5

    Article  PubMed  Google Scholar 

  125. Sepah YJ, Sadiq MA, Chu DS et al (2017) Primary (month-6) outcomes of the STOP-uveitis study: evaluating the safety, tolerability, and efficacy of tocilizumab in patients with noninfectious uveitis. Am J Ophthalmol 183:71–80. https://doi.org/10.1016/j.ajo.2017.08.019

    Article  CAS  PubMed  Google Scholar 

  126. Reddy A, Muhammad F, Lee DJ (2018) Biological therapies that target inflammatory cytokines to treat uveitis. Adv Diagnosis Manag Uveitis. https://doi.org/10.5772/intechopen.82252

    Article  Google Scholar 

  127. Wendling D, Dernis E, Prati C et al (2011) Onset of inflammatory eye disease under tocilizumab treatment for rheumatologic conditions: a paradoxical effect? J Rheumatol 38:2284. https://doi.org/10.3899/jrheum.110170

    Article  PubMed  Google Scholar 

  128. Lin P (2015) Targeting interleukin-6 for noninfectious uveitis. Clin Ophthalmol 9:1697–1702

    Article  CAS  Google Scholar 

  129. Heissigerová J, Callanan D, de Smet MD et al (2019) Efficacy and safety of sarilumab for the treatment of posterior segment noninfectious uveitis (SARIL-NIU): the phase 2 SATURN study. Ophthalmology 126:428–437. https://doi.org/10.1016/j.ophtha.2018.09.044

    Article  PubMed  Google Scholar 

  130. Boyce EG, Rogan EL, Vyas D et al (2018) Sarilumab: review of a second IL-6 receptor antagonist indicated for the treatment of rheumatoid arthritis. Ann Pharmacother 52:780–791. https://doi.org/10.1177/1060028018761599

    Article  CAS  PubMed  Google Scholar 

  131. Sandborn WJ, Gasink C, Gao LL et al (2012) Ustekinumab induction and maintenance therapy in refractory Crohn’s disease. N Engl J Med. https://doi.org/10.1056/NEJMoa1203572

    Article  PubMed  Google Scholar 

  132. Pepple KL, Lin P (2018) Targeting interleukin-23 in the treatment of noninfectious uveitis. Ophthalmology 125:1977–1983. https://doi.org/10.1016/j.ophtha.2018.05.014

    Article  PubMed  PubMed Central  Google Scholar 

  133. McInnes IB, Kavanaugh A, Gottlieb AB et al (2013) Efficacy and safety of ustekinumab in patients with active psoriatic arthritis: 1 year results of the phase 3, multicentre, double-blind, placebo-controlled PSUMMIT 1 trial. Lancet. https://doi.org/10.1016/S0140-6736(13)60594-2

    Article  PubMed  Google Scholar 

  134. Mugheddu C, Atzori L, Del Piano M et al (2017) Successful ustekinumab treatment of noninfectious uveitis and concomitant severe psoriatic arthritis and plaque psoriasis. Dermatol Ther 30:e12527. https://doi.org/10.1111/dth.12527

    Article  Google Scholar 

  135. Theofilopoulos AN, Baccala R, Beutler B, Kono DH (2005) Type I Interferons (α/β) in immunity and autoimmunity. Annu Rev Immunol. https://doi.org/10.1146/annurev.immunol.23.021704.115843

    Article  PubMed  Google Scholar 

  136. Deuter C, Stübiger N, Zierhut M (2012) Interferon-α therapy in noninfectious uveitis. Dev Ophthalmol 51:90–97. https://doi.org/10.1159/000336324

    Article  CAS  PubMed  Google Scholar 

  137. Lee JH, Lee CS, Lee SC (2018) Interferon alpha-2a treatment for refractory Behcet uveitis in Korean patients. BMC Ophthalmol. https://doi.org/10.1186/s12886-018-0719-0

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sobaci G, Bayraktar Z, Bayer A (2005) Interferon alpha-2a treatment for serpiginous choroiditis. Ocul Immunol Inflamm 13:59–66. https://doi.org/10.1080/09273940490518865

    Article  CAS  PubMed  Google Scholar 

  139. Bodaghi B, Gendron G, Wechsler B et al (2007) Efficacy of interferon alpha in the treatment of refractory and sight threatening uveitis: a retrospective monocentric study of 45 patients. Br J Ophthalmol 91:335–339. https://doi.org/10.1136/bjo.2006.101550

    Article  PubMed  Google Scholar 

  140. Butler NJ, Suhler EB, Rosenbaum JT (2012) Interferon alpha 2b in the treatment of uveitic cystoid macular edema. Ocul Immunol Inflamm 20:86–90. https://doi.org/10.3109/09273948.2011.645989

    Article  CAS  PubMed  Google Scholar 

  141. Invernizzi A, Iannaccone F, Marchi S et al (2019) Interferon alpha-2a for the treatment of post-infectious uveitis secondary to presumed intraocular tuberculosis. Ocul Immunol Inflamm 27:643–650. https://doi.org/10.1080/09273948.2018.1431292

    Article  CAS  PubMed  Google Scholar 

  142. De Simone L, Sangiovanni A, Aldigeri R et al (2020) Interferon alpha-2a treatment for post-uveitic refractory macular edema. Ocul Immunol Inflamm 28:322–328. https://doi.org/10.1080/09273948.2019.1589526

    Article  CAS  PubMed  Google Scholar 

  143. Afarid M, Lashkarizadeh H, Ashraf MJ et al (2016) The efficacy of intravitreal interferon alpha-2b for the treatment of experimental endotoxin-induced uveitis. Indian J Ophthalmol 64:376–381. https://doi.org/10.4103/0301-4738.185605

    Article  PubMed  PubMed Central  Google Scholar 

  144. Kertes PJ, Britton WA, Leonard BC (1997) Intravitreal interferon alpha-2b for the treatment of neovascular age-related macular degeneration: a pilot study. Can J Ophthalmol 32:185–188

    CAS  PubMed  Google Scholar 

  145. Mackensen F, Jakob E, Springer C et al (2013) Interferon versus methotrexate in intermediate uveitis with macular edema: results of a randomized controlled clinical trial. Am J Ophthalmol 156:478–486.e1. https://doi.org/10.1016/j.ajo.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  146. Kinyas Ş, Esgin H (2016) Peripheral vasculitis, intermediate uveitis and interferon use in multiple sclerosis. Turkish J Ophthalmol 46:41–43. https://doi.org/10.4274/tjo.35555

    Article  Google Scholar 

  147. Hogan J, Bomback AS, Mehta K et al (2013) Treatment of idiopathic FSGS with adrenocorticotropic hormone gel. Clin J Am Soc Nephrol. https://doi.org/10.2215/CJN.02840313

    Article  PubMed  PubMed Central  Google Scholar 

  148. Brzoska T, Luger TA, Maaser C et al (2008) Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases. Endocr Rev 29:581–602. https://doi.org/10.1210/er.2007-0027

    Article  CAS  PubMed  Google Scholar 

  149. Philbin M, Niewoehner J, Wan GJ (2017) Clinical and economic evaluation of repository corticotropin injection: a narrative literature review of treatment efficacy and healthcare resource utilization for seven key indications. Adv Ther. 34(8):1775–1790. https://doi.org/10.1007/s12325-017-0569-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baram TZ, Mitchell WG, Tournay A et al (1996) High-dose corticotropin (ACTH) versus prednisone for infantile spasms: a prospective, randomized, blinded study. Pediatrics 97:375–379

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Levine T (2012) Treating refractory dermatomyositis or polymyositis with adrenocorticotropic hormone gel: a retrospective case series. Drug Des Devel Ther 6:133–139. https://doi.org/10.2147/DDDT.S33110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Agarwal A, Hassan M, Sepah YJ et al (2016) Subcutaneous repository corticotropin gel for non-infectious panuveitis: reappraisal of an old pharmacologic agent. Am J Ophthalmol Case Reports 4:78. https://doi.org/10.1016/j.ajoc.2016.09.004

    Article  CAS  Google Scholar 

  153. Sharon Y, Chu D (2019) Adrenocorticotropic hormone gel for patients with non-infectious uveitis. Am J Ophthalmol Case Reports 15:100502. https://doi.org/10.1016/j.ajoc.2019.100502

    Article  Google Scholar 

  154. ACTH as A Re-emerging the rapy for uveitis (The ACTHAR Study) - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT02931175. Accessed 8 May 2020

  155. Evenou J-P, Wagner J, Zenke G et al (2009) The potent protein kinase C-selective inhibitor AEB071 (sotrastaurin) represents a new class of immunosuppressive agents affecting early T-cell activation. J Pharmacol Exp Ther 330:792–801. https://doi.org/10.1124/jpet.109.153205

    Article  CAS  PubMed  Google Scholar 

  156. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci. https://doi.org/10.1242/jcs.00963

    Article  PubMed  Google Scholar 

  157. Winthrop KL (2017) The emerging safety profile of JAK inhibitors in rheumatic disease. Nat Rev Rheumatol 13(4):234–43

    Article  CAS  Google Scholar 

  158. Damsky W, King BA (2017) JAK inhibitors in dermatology: the promise of a new drug class. J Am Acad Dermatol 76(4):736–44

    Article  CAS  Google Scholar 

  159. Johnson DE, O’Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4):234

    Article  CAS  Google Scholar 

  160. Namour F, Diderichsen PM, Cox E et al (2015) Pharmacokinetics and pharmacokinetic/pharmacodynamic modeling of filgotinib (GLPG0634), a selective JAK1 inhibitor, in support of phase IIB dose selection. Clin Pharmacokinet 54:859–874. https://doi.org/10.1007/s40262-015-0240-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Efficacy and Safety of Filgotinib in Adults With Active Noninfectious Uveitis - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03207815. Accessed 8 May 2020

  162. Sandborn WJ, Su C, Sands BE et al (2017) Tofacitinib as induction and maintenance therapy for ulcerative colitis. N Engl J Med. https://doi.org/10.1056/NEJMoa1606910

    Article  PubMed  Google Scholar 

  163. Huang J-F, Yafawi R, Zhang M et al (2012) Immunomodulatory effect of the topical ophthalmic janus kinase inhibitor tofacitinib (CP-690,550) in patients with dry eye disease. Ophthalmology 119:e43–e50. https://doi.org/10.1016/j.ophtha.2012.03.017

    Article  PubMed  Google Scholar 

  164. Tofacitinib for Inflammatory Eye Disease - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT03580343. Accessed 8 May 2020

  165. Sakkas LI, Mavropoulos A, Bogdanos DP (2017) Phosphodiesterase 4 inhibitors in immune-mediated diseases: mode of action, clinical applications, current and future perspectives. Curr Med Chem 24:3054–3067. https://doi.org/10.2174/0929867324666170530093902

    Article  CAS  PubMed  Google Scholar 

  166. Apremilast in the Treatment of Uveitis - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT00889421. Accessed 8 May 2020

  167. Maguire AM, Simonelli F, Pierce EA et al (2008) Safety and efficacy of gene transfer for Leber’s congenital amaurosis. N Engl J Med. https://doi.org/10.1056/NEJMoa0802315

    Article  PubMed  PubMed Central  Google Scholar 

  168. Trittibach P, Barker SE, Broderick CA et al (2008) Lentiviral-vector-mediated expression of murine IL-1 receptor antagonist or IL-10 reduces the severity of endotoxin-induced uveitis. Gene Ther. https://doi.org/10.1038/gt.2008.109

    Article  PubMed  PubMed Central  Google Scholar 

  169. Chu CJ, Barker SE, Dick AD, Ali RR (2012) Gene therapy for noninfectious uveitis. Ocul Immunol Inflamm 20(6):394–405

    Article  CAS  Google Scholar 

  170. Hoffman LM, Maguire AM, Bennett J (1997) Cell-mediated immune response and stability of intraocular transgene expression after adenovirus-mediated delivery. Investig Ophthalmol Vis Sci 38(11):2224–33

    CAS  Google Scholar 

  171. Mashhour B, Couton D, Perricaudet M, Briand P (1994) In vivo adenovirus-mediated gene transfer into ocular tissues. Gene Ther 1(2):122

    CAS  PubMed  Google Scholar 

  172. De Kozak Y, Thillaye-Goldenberg B, Naud MC et al (2002) Inhibition of experimental autoimmune uveoretinitis by systemic and subconjunctival adenovirus-mediated transfer of the viral IL-10 gene. Clin Exp Immunol. https://doi.org/10.1046/j.1365-2249.2002.01969.x

    Article  PubMed  PubMed Central  Google Scholar 

  173. Tian L, Yang P, Lei B et al (2011) AAV2-mediated subretinal gene transfer of hiFN-α attenuates experimental autoimmune uveoretinitis in mice. PLoS ONE. https://doi.org/10.1371/journal.pone.0019542

    Article  PubMed  PubMed Central  Google Scholar 

  174. Shi L, Guo H, Li Z et al (2019) Adenovirus-mediated down-regulation of miR-21-5p alleviates experimental autoimmune uveoretinitis in mice. Int Immunopharmacol. https://doi.org/10.1016/j.intimp.2019.105698

    Article  PubMed  Google Scholar 

  175. Emi K, Pederson JE, Toris CB (1989) Hydrostatic pressure of the suprachoroidal space. Investig Ophthalmol Vis Sci 30(2):233–238

    CAS  Google Scholar 

  176. Tyagi P, Kadam RS, Kompella UB (2012) Comparison of suprachoroidal drug delivery with subconjunctival and intravitreal routes using noninvasive fluorophotometry. PLoS ONE. https://doi.org/10.1371/journal.pone.0048188

    Article  PubMed  PubMed Central  Google Scholar 

  177. Edelhauser HF, Verhoeven RS, Burke B et al (2014) Intraocular distribution and targeting of triamcinolone acetonide suspension administered into the suprachoroidal space. Investig Ophthalmol Vis Sci 55(13):5259–5259

    Google Scholar 

  178. Gilger BC, Abarca EM, Salmon JH, Patel S (2013) Treatment of acute posterior uveitis in a porcine model by injection of triamcinolone acetonide into the suprachoroidal space using microneedles. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.13-11747

    Article  Google Scholar 

  179. Wellik SR, Dale EA (2015) A review of the iStent® trabecular micro-bypass stent: safety and efficacy. Clin Ophthalmol 9:677

    Article  Google Scholar 

  180. Olsen TW, Feng X, Wabner K et al (2011) Pharmacokinetics of pars plana intravitreal injections versus microcannula suprachoroidal injections of bevacizumab in a porcine model. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.10-6291

    Article  Google Scholar 

  181. Goldstein DA, Do D, Noronha G et al (2016) Suprachoroidal corticosteroid administration: a novel route for local treatment of noninfectious uveitis. Transl Vis Sci Technol. https://doi.org/10.1167/tvst.5.6.14

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gu B, Liu J, Li X et al (2015) Real-time monitoring of suprachoroidal space (SCS) following SCS injection using ultra-high resolution optical coherence tomography in guinea pig eyes. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.15-16597

    Article  Google Scholar 

  183. Chiang B, Jung JH, Prausnitz MR (2018) The suprachoroidal space as a route of administration to the posterior segment of the eye. Adv Drug Deliv Rev 126:58–66

    Article  CAS  Google Scholar 

  184. Bourges JL, Gautier SE, Delie F et al (2003) Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.02-1068

    Article  Google Scholar 

  185. Patel SP, Vaishya R, Pal D, Mitra AK (2015) Novel pentablock copolymer-based nanoparticulate systems for sustained protein delivery. AAPS PharmSciTech. https://doi.org/10.1208/s12249-014-0196-6

    Article  PubMed  Google Scholar 

  186. Sakai T, Ishihara T, Higaki M et al (2011) Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Investig Ophthalmol Vis Sci. https://doi.org/10.1167/iovs.10-5676

    Article  Google Scholar 

  187. Sakai T, Kohno H, Ishihara T et al (2006) Treatment of experimental autoimmune uveoretinitis with poly(lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res. https://doi.org/10.1016/j.exer.2005.09.003

    Article  PubMed  Google Scholar 

  188. Cholkar K, Gunda S, Earla R et al (2015) Nanomicellar topical aqueous drop formulation of rapamycin for back-of-the-eye delivery. AAPS PharmSciTech. https://doi.org/10.1208/s12249-014-0244-2

    Article  PubMed  Google Scholar 

  189. Tang Z, Yin L, Zhang Y et al (2019) Preparation and study of two kinds of ophthalmic nano-preparations of everolimus. Drug Deliv. https://doi.org/10.1080/10717544.2019.1692966

    Article  PubMed  PubMed Central  Google Scholar 

  190. Kost OA, Beznos OV, Davydova NG et al (2016) Superoxide dismutase 1 nanozyme for treatment of eye inflammation. Oxid Med Cell Longev. https://doi.org/10.1155/2016/5194239

    Article  Google Scholar 

  191. Fruchon S, Caminade AM, Abadie C et al (2013) An azabisphosphonate-capped poly(phosphorhydrazone) dendrimer for the treatment of endotoxin-induced uveitis. Molecules. https://doi.org/10.3390/molecules18089305

    Article  PubMed  PubMed Central  Google Scholar 

  192. Jung JH, Chiang B, Grossniklaus HE, Prausnitz MR (2018) Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. https://doi.org/10.1016/j.jconrel.2018.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  193. Jäger A, Kuchroo VK (2010) Effector and regulatory T-cell subsets in autoimmunity and tissue inflammation. Scand J Immunol 72:173–184

    Article  Google Scholar 

  194. Shukla S, Mittal SK, Foulsham W et al (2019) Therapeutic efficacy of different routes of mesenchymal stem cell administration in corneal injury. Ocul Surf 17:729–736. https://doi.org/10.1016/j.jtos.2019.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  195. Mittal SK, Foulsham W, Shukla S et al (2019) Mesenchymal stromal cells modulate corneal alloimmunity via secretion of hepatocyte growth factor. Stem Cells Transl Med 8:1030–1040. https://doi.org/10.1002/sctm.19-0004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Yeh S, Li Z, Forooghian F et al (2009) CD4+ foxp3+ T-regulatory cells in noninfectious uveitis. Arch Ophthalmol 127:407–413. https://doi.org/10.1001/archophthalmol.2009.32

    Article  PubMed  PubMed Central  Google Scholar 

  197. Nanke Y, Kotake S, Goto M et al (2008) Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol 18:354–358. https://doi.org/10.1007/s10165-008-0064-x

    Article  PubMed  Google Scholar 

  198. Chen L, Yang P, Zhou H et al (2008) Diminished frequency and function of CD4+CD25high regulatory T cells associated with active uveitis in Vogt–Koyanagi–Harada syndrome. Investig Ophthalmol Vis Sci 49:3475–3482. https://doi.org/10.1167/iovs.08-1793

    Article  Google Scholar 

  199. Rothova A, Suttorp-van Schulten MSA, Frits Treffers W, Kijlstra A (1996) Causes and frequency of blindness in patients with intraocular inflammatory disease. Br J Ophthalmol 80:332–336. https://doi.org/10.1136/bjo.80.4.332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Bodaghi B, Cassoux N, Wechsler B et al (2001) Chronic severe uveitis: etiology and visual outcome in 927 patients from a single center. Medicine (Baltimore) 80:263–270. https://doi.org/10.1097/00005792-200107000-00005

    Article  CAS  Google Scholar 

  201. de Smet MD, Taylor SRJ, Bodaghi B et al (2011) Understanding uveitis: the impact of research on visual outcomes. Prog Retin Eye Res 30:452–470

    Article  Google Scholar 

  202. Silver P, Horai R, Chen J et al (2015) Retina-specific T regulatory cells bring about resolution and maintain remission of autoimmune uveitis. J Immunol 194:3011–3019. https://doi.org/10.4049/jimmunol.1402650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Chen J, Qian H, Horai R et al (2013) Comparative analysis of induced vs. spontaneous models of autoimmune uveitis targeting the interphotoreceptor retinoid binding protein. PLoS ONE 8:e72161. https://doi.org/10.1371/journal.pone.0072161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Sun M, Yang P, Du L et al (2010) Contribution of CD4+CD25+ T cells to the regression phase of experimental autoimmune uveoretinitis. Investig Ophthalmol Vis Sci 51:383–389. https://doi.org/10.1167/iovs.09-3514

    Article  Google Scholar 

  205. Terrada C, Fisson S, De Kozak Y et al (2006) Regulatory T cells control uveoretinitis induced by pathogenic Th1 cells reacting to a specific retinal neoantigen. J Immunol 176:7171–7179. https://doi.org/10.4049/jimmunol.176.12.7171

    Article  CAS  PubMed  Google Scholar 

  206. Cohen AE, Assang C, Patane MA et al (2012) Evaluation of dexamethasone phosphate delivered by ocular iontophoresis for treating noninfectious anterior uveitis. Ophthalmology 119:66–73. https://doi.org/10.1016/j.ophtha.2011.07.006

    Article  PubMed  Google Scholar 

  207. Horwath-Winter J, Schmut O, Haller-Schober EM et al (2005) Iodide iontophoresis as a treatment for dry eye syndrome. Br J Ophthalmol 89:40–44. https://doi.org/10.1136/bjo.2004.048314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Lam TT, Edward DP, Zhu XA, Tso MOM (1989) Transscleral iontophoresis of dexamethasone. Arch Ophthalmol 107:1368–1371. https://doi.org/10.1001/archopht.1989.01070020438050

    Article  CAS  PubMed  Google Scholar 

  209. Chu DS, Johnson SJ, Mallya UG et al (2013) Healthcare costs and utilization for privately insured patients treated for non-infectious uveitis in the USA. J Ophthalmic Inflamm Infect. https://doi.org/10.1186/1869-5760-3-64

    Article  PubMed  PubMed Central  Google Scholar 

  210. Adán-Civera AM, Benítez-del-Castillo JM, Blanco-Alonso R et al (2016) Carga y costes directos de la uveítis no infecciosa en España. Reumatol Clin. https://doi.org/10.1016/j.reuma.2015.08.004

    Article  PubMed  Google Scholar 

Download references

Funding

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniruddha Agarwal.

Ethics declarations

Conflict of interest

None of the authors involved in this research have any conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.B., Sinha, S., Saini, C. et al. Recent advances in the management of non-infectious posterior uveitis. Int Ophthalmol 40, 3187–3207 (2020). https://doi.org/10.1007/s10792-020-01496-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01496-0

Keywords

Navigation