Skip to main content

Advertisement

Log in

Relationship between homocysteine levels, anterior chamber depth, and pseudoexfoliation glaucoma in patients with pseudoexfoliation

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

This study investigates the relationship between plasma homocysteine levels, anterior chamber depth (ACD), and pseudoexfoliation glaucoma (PEXG) in patients with pseudoexfoliation syndrome.

Methods

Sixty patients (F:M = 35:25) with pseudoexfoliation (PEX) were divided into two groups based on their plasma homocysteine levels; group 1 (< 20 µmol/L, normal) and group 2 (≥ 20 µmol/L, high). Intraocular pressure (IOP) and ACD values as well as plasma homocysteine levels were compared between the two groups. Moreover, the mean values for ACD and IOP were compared between patients stratified according to the reference upper limit for the homocysteine level (above and below 14 μmol/L), and the prevalence of high IOP was estimated.

Results

Groups 1 and 2 showed no statistically significant differences in the mean ACD (3.04 ± 0.28 vs. 3.07 ± 0.31 mm, respectively) and mean IOP (20.63 ± 10.22 vs. 21.67 ± 7.55 mmHg, respectively). Patients with PEX and homocysteine levels > 14 μmol/L had a significantly increased prevalence (P < 0.05) of high IOP (≥ 22 mmHg).

Conclusions

Patients with PEX and high homocysteine levels have an increased prevalence of high IOP. No relationship exists between plasma homocysteine levels and ACD. Thus, PEXG should be suspected in patients with PEX and high plasma homocysteine levels. Plasma homocysteine levels could be helpful for the diagnosis of PEXG, although larger sample studies are required to confirm this finding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tranchina L, Centofanti M, Oddone F et al (2011) Levels of plasma homocysteine in pseudoexfoliation glaucoma. Graefes Arch Clin Exp Ophthalmol 249:443–448

    Article  CAS  Google Scholar 

  2. Bowling B (2016) Kanski’s clinical ophthalmology: a systemic approach, 8th edn. Kennedy Boulevard, Elsevier, Philadelphia

    Google Scholar 

  3. Rebecca M, Gayathri R, Bhuvanasundar R, Sripriya K, Shantha B, Angayarkanni N (2019) Elastin modulation and modification by homocysteine: a key factor in the pathogenesis of Pseudoexfoliation syndrome? Br J Ophthalmol 103:985–992

    Article  Google Scholar 

  4. Turkcu FM, Koz OG, Yarangumeli A, Oner V, Kural G (2013) Plasma homocysteine, folic acid, and vitamin B12 levels in patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and normotensive glaucoma. Medicina (Kaunas) 49:214–218

    Google Scholar 

  5. McQuillan BM, Beilby JP, Nidorf M, Thompson PL, Hung J (1999) Hyperhomocysteinemia but not the C677T mutation of methylenetetrahydrofolate reductase is an independent risk determinant of carotid wall thickening. The Perth Carotid Ultrasound Disease Assessment Study. Circulation 99:2383–2388

    Article  CAS  Google Scholar 

  6. Wald D, Law M, Morris JK (2002) Homocysteine and cardiovascular disease: evidence on casualty from meta-analysis. BMJ 325:1202–1208

    Article  Google Scholar 

  7. Pianka P, Almog Y, Man O, Goldstein M, Sela B, Loewenstein A (2000) Hyperhomocysteinemia in patients with nonarteritic anterior ischemic optic neuropathy, central retinal artery occlusion and central retinal vein occlusion. Ophthalmology 107:1588–1592

    Article  CAS  Google Scholar 

  8. Weger M, Stanger O, Deutschmann H et al (2001) Hyperhomocyst(e)inaemia, but not C677T mutation, as a risk factor for non-arteritic ischaemic neuropathy. Br J Ophthalmol 85:803–808

    Article  CAS  Google Scholar 

  9. Vardhan AS, Haripriya A, Ratukondla B et al (2017) Association of pseudoexfoliation with systemic vascular diseases in a South Indian population. JAMA Ophthalmol 135:348–354

    Article  Google Scholar 

  10. Zacharaki F, Hadjigeorgeiou GM, Koliakos GG et al (2014) Plasma homocysteine and genetic variants of homocysteine metabolism enzymes in patients from central Greece with primary open-angle glaucoma and pseudoexfoliation glaucoma. Clin Ophthalmol 8:1819–1825

    Article  CAS  Google Scholar 

  11. Doganay S, Tasar A, Cankaya C, Firat PG, Yologlu S (2012) Evaluation of Pentacam–Scheimpflug imaging of anterior segment parameters in patients with pseudoexfoliation syndrome and pseudoexfoliative glaucoma. Clin Exp Optom 95:218–222

    Article  Google Scholar 

  12. Bozkurt B, Guzel H, Kamıs U, Gedik S, Okudan S (2015) Characteristics of the anterior segment biometry and corneal endothelium in eyes with pseudoexfoliation syndrome and senile cataract. Turk J Ophthalmol 45:188–192

    Article  Google Scholar 

  13. Andrikopoulos GK, Alexopoulos DK, Gartagaris SP (2014) Pseudoexfoliation syndrome and cardiovascular disease. World J Cardiol 6:847–854

    Article  Google Scholar 

  14. Turgut B, Kaya M, Arslan S et al (2010) Levels of circulating homocysteine, vitamin B6, vitamin B12, and folate in different types of open-angle glaucoma. Clin Interv Aging 5:133–139

    Article  CAS  Google Scholar 

  15. Clarke R, Stansbie D (2001) Assessment of homocysteine as a cardiovascular risk factor in clinical practice. Ann Clin Biochem 38:624–632

    Article  CAS  Google Scholar 

  16. Junemann AG, von Ahsen N, Reulbach U et al (2005) C677T variant in the methylentetrahydrofolate reductase gene is a genetic risk factor for primary open-angle glaucoma. Am J Ophthalmol 139:721–723

    Article  Google Scholar 

  17. Bleich S, Roedl J, Von Ahsen N et al (2004) Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma. Am J Ophthalmol 138:162–164

    Article  CAS  Google Scholar 

  18. Roedl JB, Bleich S, Reulbach U et al (2007) Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma. J Glaucoma 16:234–239

    Article  Google Scholar 

  19. Fan BJ, Chen T, Grosskreutz C et al (2008) Lack of association of polymorphisms in homocysteine metabolism genes with pseudoexfoliation syndrome and glaucoma. Mol Vis 14:2484–2491

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu F, Zhang L, Li M (2012) Plasma homocysteine, serum folic acid, serum vitamin B12, serum vitamin B6, MTHFR and risk of pseudoexfoliation glaucoma: a meta-analysis. Graefes Arch Clin Exp Ophthalmol 250:1067–1074

    Article  CAS  Google Scholar 

  21. Xu F, Zhao X, Zeng SM, Li L, Zhong HB, Li M (2012) Homocysteine, B vitamins, methylene tetrahydrofolate reductase gene, and risk of primary open-angle glaucoma: a meta-analysis. Ophthalmology 119:2493–2499

    Article  Google Scholar 

  22. Moore P, El-sherbeny A, Roon P et al (2001) Apoptotic cell death in the mouse retinal ganglion cell layer is induced in vivo by the excitatory amino acid homocysteine. Exp Eye Res 73:45–57

    Article  CAS  Google Scholar 

  23. Ganapathy PS, White RE, Ha Y et al (2011) The role of N-methyl-d-aspartate receptor activation in homocysteine-induced death of retinal ganglion cells. Invest Ophthalmol Vis Sci 52:5515–5524

    Article  CAS  Google Scholar 

  24. Brunelli T, Prisco D, Fedi S, Rogolino A et al (2000) High prevalence of mild hyperhomocysteinemia in patients with abdominal aortic aneurysm. J Vasc Surg 32:531–536

    Article  CAS  Google Scholar 

  25. Cumurcu T, Sahin S, Aydın E (2006) Serum homocysteine, vitamin B 12 and folic acid levels in different types of glaucoma. BMC Ophthalmol 6:6

    Article  Google Scholar 

  26. Koliakos GG, Konstas AG, Schlötzer-Schrehardt U et al (2004) Endothelin-1 concentration is increased in aqueous humour of patients with exfoliation syndrome. Br J Ophthalmol 88:523–527

    Article  CAS  Google Scholar 

  27. Turaçli ME, Tekeli O, Ozdemir F, Akar N (2005) Methylenetetrahydrofolate reductase 677 C-T and homocysteine levels in Turkish patients with pseudoexfoliation. Clin Exper Ophthalmol 33:505–508

    Article  Google Scholar 

  28. Jeng SM, Karger RA, Hodge DO et al (2007) The risk of glaucoma in pseudoexfoliation syndrome. J Glaucoma 16:117–121

    Article  Google Scholar 

  29. Bartholomew RS (1980) Anterior chamber depth in eyes with pseudoexfoliation. Br J Ophthalmol 64:322–323

    Article  CAS  Google Scholar 

  30. You QS, Xu L, Wang YX et al (2013) Pseudoexfoliation: normative data and associations. The Beijing Eye Study 2011. Ophthalmology 120:1551–1558

    Article  Google Scholar 

  31. Lanzl IM, Merté RL, Graham AD (2000) Does head positioning influence anterior chamber depth in pseudoexfoliation syndrome? J Glaucoma 9:214–218

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haci Koc.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (include name of committee + reference number) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all study participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 109 kb)

Supplementary material 2 (DOCX 513 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koc, H., Kaya, F. Relationship between homocysteine levels, anterior chamber depth, and pseudoexfoliation glaucoma in patients with pseudoexfoliation. Int Ophthalmol 40, 1731–1737 (2020). https://doi.org/10.1007/s10792-020-01341-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-020-01341-4

Keywords

Navigation