Skip to main content
Log in

Er-Doped LiMn2O4

  • Published:
Inorganic Materials Aims and scope

Abstract

LiMn2-x ErxO4 (x ≤ 0.02) materials were synthesized by a rheological phase reaction method. The thermal behavior of the materials was examined by thermogravimetric and differential scanning calorimetry. X-ray diffraction showed that the samples (x ≤ 0.02 ) exhibited the same phase as the pure spinel. The lattice parameter of the Er-doped spinel was smaller than that of the undoped one and decreased with increasing doping level. Cyclic voltammograms showed two reversible processes corresponding to the typical response of spinel LiMn2O4 and revealed an insertion-extraction reaction occurring at two stages in the 4-V region. The electrochemical performances of the samples were studied and displayed a better reversibility and cyclability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tarascon, J.M., Wang, E., et al., The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells, J. Electrochem. Soc., 1991, vol. 138, p. 2859.

    CAS  Google Scholar 

  2. Ohzuka, T., Kitagawa, M., and Hirai, T., Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell, J. Electrochem. Soc., 1990, vol. 137, p. 769.

    Google Scholar 

  3. Xia, Y. Kumada, N., et al., Enhancing the Elevated Temperature Performance of Li/LiMn2O4 Cells by Reducing LiMn2O4 Surface Area, J. Power Sources, 2000, vol. 90, p. 135.

    CAS  Google Scholar 

  4. Thackeray, M.M., Shao-Horn, Y., et al., Study on Synthesis and Electrochemical Properties of the Spinel LiMn2O4, Electrochem. Solid-State Lett., 1998, vol. 1, p. 7.

    CAS  Google Scholar 

  5. Amatucci, G.G., Schmutz, C.N., et al., Materials Effects on the Elevated and Room Temperatures Performance of C/LiMn2O4 Li-Ion Batteries, J. Power Sources, 1997, vol. 69, p. 11.

    CAS  Google Scholar 

  6. Yamada, A. and Tanaka, M., Jahn-Teller Structural Phase Transition around 280 K in LiMn2O4, Mater. Res. Bull., 1995, vol. 30, p. 715.

    CAS  Google Scholar 

  7. Tang Hao, Feng Chuang-Qi, et al., The Synthesis and Electrochemical Studies of Doped-Y LiMn2O4 Spinel, Acta Chem. Sin., 2003, vol. 61, no.1, p. 47.

    CAS  Google Scholar 

  8. Zhao Yong Chen, Xing Quan Liu, et al., Electrochemical Properties of Spinel LiMn2O4-δ Fδ for Cathode Materials of Secondary Lithium-Ion Battery, Chin. Chem. Lett., 2000, vol. 11, no.5, p. 455.

    Google Scholar 

  9. Zhang, S.S. and Jow, Y.R., Optimization of Synthesis Condition and Electrode Fabrication for LiMn2O4 Cathode, J. Power Sources, 2002, vol. 109, p. 172.

    CAS  Google Scholar 

  10. Tarascon, J.M. and Gnyomand, D., Li Metal-Free Recharge Based on Li1 + x Mn2O4 Cathodes (0 ≤ x ≤ 1 ) and Carbon Anodes, J. Electrochem. Soc., 1991, vol. 138, p. 2864.

    CAS  Google Scholar 

  11. Liu, W., Farrington, G.C., et al., Surface Layer Formation on Thin-Film LiMn2O4 Electrodes at Elevated Temperatures, J. Electrochem. Soc., 2001, vol. 148, p. A687.

    Google Scholar 

  12. Taniguchi, I., Song, D., and Wakihara, M., Electrochemical Properties of LiM1/6 Mn11/6O4 (M = Co, Mn, Al, and Ni), J. Power Sources, 2002, vol. 109, p. 333.

    CAS  Google Scholar 

  13. Thackeray, M.M., A Comment on the Structure of Thin-Film LiMn2O4 Electrodes, J. Electrochem. Soc., 1997, vol. 144, p. L100.

    CAS  Google Scholar 

  14. Amatucci, G.G., Blyr, A., Sigala, C., et al., Surface Treatments of Li1 + x Mn2-x O4 Spinel for Improved Elevated Temperature Performance, Solid State Ionics, 1997, vol. 104, p. 13.

    CAS  Google Scholar 

  15. Yang, S.T., Jia, J.H., et al., Structure and Cyclability of LiMn2O4 and LiNd0.01Mn1.99O4 as Cathode for Li-Ion Batteries, Electrochim. Acta, 2003, vol. 48, p. 569.

    CAS  Google Scholar 

  16. Guohua, L., Ikuta, H., et al., The Spinel Phases LiMn2-y MyO4 (M = Co, Cr, Ni) as the Cathode for Rechargeable Lithium Batteries, J. Electrochem. Soc., 1996, vol. 143, p. 178.

    Google Scholar 

  17. Feng, C.Q., Tang, H., et al., Synthesis and Electrochemical Characterization of Nonstoichiometry Spinel Phase for Lithium Ion Battery Applications, Mater. Chem. Phys., 2003, vol. 80, no.3, p. 573.

    CAS  Google Scholar 

  18. Hwang, B.J., Santhanam, R., et al., Characterization of Nanoparticles of LiMn2O4 Synthesized by Citric Acid Sol-Gel Method, J. Power Sources, 2000, vol. 97, p. 443.

    Google Scholar 

  19. Yongjao Xiao, Yasufumi Hideshima, et al., Studies on Li-Mn-O Spinel System as a Cathode for 4 V Lithium Batteries, J. Power Sources, 1998, vol. 24, p. 24.

    Google Scholar 

  20. Hayashi, N., Ikuta, H., and Wakihara, M., Cathode of LiMgyMn2-y O4-δ Spinel Phase for Lithium Secondary Batteries, J. Electrochem. Soc., 1999, vol. 146, no.4, p. 1351.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

From Neorganicheskie Materialy, Vol. 41, No. 6, 2005, pp. 740–743.

Original English Text Copyright © 2005 by Haowen Liu, Li Song, Kelli Zhang.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Song, L. & Zhang, K. Er-Doped LiMn2O4 . Inorg Mater 41, 646–649 (2005). https://doi.org/10.1007/s10789-005-0183-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10789-005-0183-0

Keywords

Navigation