Skip to main content

Advertisement

Log in

Bortezomib: a proteasome inhibitor for the treatment of autoimmune diseases

  • Review
  • Published:
Inflammopharmacology Aims and scope Submit manuscript

Abstract

Autoimmune diseases (ADs) are conditions in which the immune system cannot distinguish self from non-self and, as a result, tissue injury occurs primarily due to the action of various inflammatory mediators. Different immunosuppressive agents are used for the treatment of patients with ADs, but some clinical cases develop resistance to currently available therapies. The proteasome inhibitor bortezomib (BTZ) is an approved agent for first-line therapy of people with multiple myeloma. BTZ has been shown to improve the symptoms of different ADs in animal models and ameliorated symptoms in patients with systemic lupus erythematous, rheumatoid arthritis, myasthenia gravis, neuromyelitis optica spectrum disorder, Chronic inflammatory demyelinating polyneuropathy, and autoimmune hematologic diseases that were nonresponsive to conventional therapies. Proteasome inhibition provides a potent strategy for treating ADs. BTZ represents a proteasome inhibitor that can potentially be used to treat AD patients resistant to conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

Abbreviations

Ab:

Anti-body

AchR:

Acetylcholine receptors

AD:

Autoimmune disease

AH:

Acquired hemophilia

AIA:

Adjuvant-induced arthritis

AIHA:

Autoimmune hemolytic anemia

AMR:

Antibody mediated rejection

APC:

Antigen presenting cell

AZA:

Azathioprine

BAFF:

B cell-activating factor

BTZ:

Borttezomib

C1q:

Complement component 1q

CDK:

Cyclin dependent kinase

CHOP:

C/EBP homologous protein

CIA:

Colagen-induced arthritis

CIDP:

Chronic inflammatory demyelinating polyneuropathy

COX:

Cyclooxygenase

CTLA4:

Cytotoxic T-lymphocyte-associated protein 4

CYP:

Cyclophosphamide

DC:

Dendritic cells

dsDNA:

Double strand DNA

EOMG:

Early onset myasthenia gravis

ER:

Endoplasmic reticulem

ESS:

Experimental Sjogren's syndrome

FDA:

Food and drug administration

FLS:

Fibroblast-like synoviocytes

FLS:

Fibroblast-like synoviocytes

GC:

Glucocorticoids

IAP:

Inhibitor of apoptosis

IBD:

Inflammatory bowel disease

IDO1:

Indoleamine 2,3-dioxygenase 1

IFN-γ:

Interferon-gamma

IL:

Interleukin

IV:

Intra venus

IVIG:

Intravenous immunoglobulins

IҡB:

Inhibitor of ҡB

LFA:

Lymphocyte function-associated antigen-1

LLPC:

Long-lived plasma cell

LN:

Lupus-like nephritis

LRP4:

Low-density lipoprotein receptor-related protein

MCL:

Mantle cell lymphoma

MDC:

Myeloid dendritic cell

MG:

Myasthenia gravis

MM:

Multiple myeloma

MMF:

Mycophenolate mofetile

MMP3:

Matrix metalloproteinases

MQ:

Macrophage

MTX:

Metathroxate

MUSK:

Mussel specific kinase

NET:

Neutrophil extracellular trap

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NK:

Natural killer

NMOSD:

Neuromyelitis optica spectrum disorder

NOD:

None-obese diabetic

NOS:

Nitric oxide synthase

PC:

Plasma cell

PCNA:

Proliferating cell nuclear antigen

pDC:

Plasmacytoid dendritic cell

PE:

Plasma exchange

PN:

Peripheral nephropathy

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SC:

Subcutaneously

SG:

Sjogren's syndrome

SLE:

Systemic lupus erythematous

SLPC:

Short-lived plasma cell

SS:

Sodium sulfate

TID:

Type I diabetes

TLR:

Toll-like receptor

TNFα:

Tumor necrosis factor alpha

TTP:

Thrombotic thrombocytopenic purpura

U1RNP:

U1 ribounucleoprotein

UPS:

Ubiquitin proteasome system

VLA-4:

Very late antigen-4

References

  • Adams J (2001) Proteasome inhibition in cancer: development of PS-341. Semin Oncol 28(6):613–619

    Article  CAS  PubMed  Google Scholar 

  • Adams J (2002a) Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14(6):628–634

    Article  CAS  PubMed  Google Scholar 

  • Adams J (2002b) Development of the proteasome inhibitor PS-341. Oncologist 7(1):9–16

    Article  CAS  PubMed  Google Scholar 

  • Adams J (2004) The proteasome: a suitable antineoplastic target. Nat Rev Cancer 4(5):349–360

    Article  CAS  PubMed  Google Scholar 

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD et al (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59(11):2615–2622

    CAS  PubMed  Google Scholar 

  • Al-Douahji M, Brugarolas J, Brown PA, Stehman-Breen CO, Alpers CE, Shankland SJ (1999) The cyclin kinase inhibitor p21WAF1/CIP1 is required for glomerular hypertrophy in experimental diabetic nephropathy. Kidney Int 56(5):1691–1699

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Sarfert R, Klotsche J, Kühl AA, Rubbert-Roth A, Lorenz H-M et al (2015) The proteasome inhibitior bortezomib depletes plasma cells and ameliorates clinical manifestations of refractory systemic lupus erythematosus. Ann Rheum Dis 74(7):1474–1478

    Article  CAS  PubMed  Google Scholar 

  • Alexander T, Cheng Q, Klotsche J, Khodadadi L, Waka A, Biesen R et al (2018) Proteasome inhibition with bortezomib induces a therapeutically relevant depletion of plasma cells in SLE but does not target their precursors. Eur J Immunol 48(9):1573–1579

    Article  CAS  PubMed  Google Scholar 

  • An B, Goldfarb RH, Siman R, Dou QP (1998) Novel dipeptidyl proteasome inhibitors overcome Bcl-2 protective function and selectively accumulate the cyclin-dependent kinase inhibitor p27 and induce apoptosis in transformed, but not normal, human fibroblasts. Cell Death Differ 5(12):1062–1075

    Article  CAS  PubMed  Google Scholar 

  • Andrejevic S, Jeremic I, Sefik-Bukilica M, Nikolic M, Stojimirovic B, Bonaci-Nikolic B (2013) Immunoserological parameters in SLE: high-avidity anti-dsDNA detected by ELISA are the most closely associated with the disease activity. Clin Rheumatol 32(11):1619–1626

    Article  PubMed  Google Scholar 

  • Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M (2015) The immunoproteasome: a novel drug target for autoimmune diseases. Clin Exp Rheumatol 33(4 Suppl 92):S74–S79

    PubMed  Google Scholar 

  • Belghith M, Bluestone JA, Barriot S, Mégret J, Bach J-F, Chatenoud L (2003) TGF-beta-dependent mechanisms mediate restoration of self-tolerance induced by antibodies to CD3 in overt autoimmune diabetes. Nat Med 9(9):1202–1208

    Article  CAS  PubMed  Google Scholar 

  • Benfaremo D, Gabrielli A (2019) Is there a future for anti-CD38 antibody therapy in systemic autoimmune diseases? Cells 9(1):77

    Article  PubMed Central  CAS  Google Scholar 

  • Carson KR, Beckwith LG, Mehta J (2010) Successful treatment of IgM-mediated autoimmune hemolytic anemia with bortezomib. Blood (united States) 115:915

    CAS  Google Scholar 

  • Chatenoud L, Primo J, Bach JF (1997) CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J Immunol 158(6):2947–2954

    CAS  PubMed  Google Scholar 

  • Cromm PM, Crews CM (2017) The proteasome in modern drug discovery: second life of a highly valuable drug target. ACS Cent Sci 3(8):830–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Amico G (1999) Tubulointerstitium as predictor of progression of glomerular diseases. Nephron (switzerland) 83:289–295

    Google Scholar 

  • Davidson A, Diamond B (2001) Autoimmune diseases. N Engl J Med 345(5):340–350

    Article  CAS  PubMed  Google Scholar 

  • Dominguez-Villar M, Hafler DA (2018) Regulatory T cells in autoimmune disease. Nat Immunol 19(7):665–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elliott PJ, Zollner TM, Boehncke W-H (2003) Proteasome inhibition: a new anti-inflammatory strategy. J Mol Med (berl) 81(4):235–245

    Article  CAS  Google Scholar 

  • Everly MJ, Everly JJ, Susskind B, Brailey P, Arend LJ, Alloway RR et al (2009) Proteasome inhibition reduces donor-specific antibody levels. Transplant Proc 41(1):105–107

    Article  CAS  PubMed  Google Scholar 

  • Fierabracci A (2012) Proteasome inhibitors: a new perspective for treating autoimmune diseases. Curr Drug Targets 13(13):1665–1675

    Article  CAS  PubMed  Google Scholar 

  • Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S et al (2018) Multiple sclerosis. Nat Rev Dis Prim [internet] 4(1):43. https://doi.org/10.1038/s41572-018-0041-4

    Article  Google Scholar 

  • Fissolo N, Kraus M, Reich M, Ayturan M, Overkleeft H, Driessen C et al (2008) Dual inhibition of proteasomal and lysosomal proteolysis ameliorates autoimmune central nervous system inflammation. Eur J Immunol [internet] 38(9):2401–2411. https://doi.org/10.1002/eji.200838413

    Article  CAS  Google Scholar 

  • Fox RI (2005) Sjögren’s syndrome. Lancet (London, England) 366(9482):321–331

    Article  CAS  Google Scholar 

  • Fröhlich K, Holle JU, Aries PM, Gross WL, Moosig F (2011) Successful use of bortezomib in a patient with systemic lupus erythematosus and multiple myeloma. Ann Rheum Dis (england) 70:1344–1345

    Article  Google Scholar 

  • Furlan M, Robles R, Galbusera M, Remuzzi G, Kyrle PA, Brenner B et al (1998) von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 339(22):1578–1584

    Article  CAS  PubMed  Google Scholar 

  • Goekoop-Ruiterman YPM, de Vries-Bouwstra JK, Allaart CF, van Zeben D, Kerstens PJSM, Hazes JMW et al (2007) Comparison of treatment strategies in early rheumatoid arthritis: a randomized trial. Ann Intern Med 146(6):406–415

    Article  PubMed  Google Scholar 

  • Goldberg AL (2007) Functions of the proteasome: from protein degradation and immune surveillance to cancer therapy. Biochem Soc Trans 35(Pt 1):12–17

    Article  CAS  PubMed  Google Scholar 

  • Gomez AM, Vrolix K, Martínez-Martínez P, Molenaar PC, Phernambucq M, van der Esch E et al (2011) Proteasome inhibition with bortezomib depletes plasma cells and autoantibodies in experimental autoimmune myasthenia gravis. J Immunol 186(4):2503–2513

    Article  CAS  PubMed  Google Scholar 

  • Gomez AM, Willcox N, Molenaar PC, Buurman W, Martinez-Martinez P, De Baets MH et al (2012) Targeting plasma cells with proteasome inhibitors: possible roles in treating myasthenia gravis? Ann N Y Acad Sci 1274:48–59

    Article  CAS  PubMed  Google Scholar 

  • Gomez AM, Willcox N, Vrolix K, Hummel J, Nogales-Gadea G, Saxena A et al (2014) Proteasome inhibition with bortezomib depletes plasma cells and specific autoantibody production in primary thymic cell cultures from early-onset myasthenia gravis patients. J Immunol 193(3):1055–1063

    Article  CAS  PubMed  Google Scholar 

  • Gospe SM, Chen JJ, Bhatti MT (2021) Neuromyelitis optica spectrum disorder and myelin oligodendrocyte glycoprotein associated disorder-optic neuritis: a comprehensive review of diagnosis and treatment. Eye [internet] 35(3):753–768. https://doi.org/10.1038/s41433-020-01334-8

    Article  CAS  Google Scholar 

  • Gregson A, Thompson K, Tsirka SE, Selwood DL (2019) Emerging small-molecule treatments for multiple sclerosis: focus on B cells. F1000Research [Internet] 8:F1000 Faculty Rev-245. https://pubmed.ncbi.nlm.nih.gov/30863536. Accessed 17 Aug 2021

  • Groettrup M, Kirk CJ, Basler M (2010) Proteasomes in immune cells: more than peptide producers? Nat Rev Immunol Engl 10:73–78

    Article  CAS  Google Scholar 

  • Guan Q (2019) A comprehensive review and update on the pathogenesis of inflammatory Bowel disease. J Immunol Res 2019:7247238

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hainz N, Thomas S, Neubert K, Meister S, Benz K, Rauh M et al (2012) The proteasome inhibitor bortezomib prevents lupus nephritis in the NZB/W F1 mouse model by preservation of glomerular and tubulointerstitial architecture. Nephron Exp Nephrol 120(2):e47-58

    Article  CAS  PubMed  Google Scholar 

  • Heinemann S, Merlie J, Lindstrom J (1978) Modulation of acetylcholine receptor in rat diaphragm by anti-receptor sera. Nature 274(5666):65–68

    Article  CAS  PubMed  Google Scholar 

  • Hiepe F, Dörner T, Hauser AE, Hoyer BF, Mei H, Radbruch A (2011) Long-lived autoreactive plasma cells drive persistent autoimmune inflammation. Nat Rev Rheumatol 7(3):170–178

    Article  CAS  PubMed  Google Scholar 

  • Hill ME, Shiono H, Newsom-Davis J, Willcox N (2008) The myasthenia gravis thymus: a rare source of human autoantibody-secreting plasma cells for testing potential therapeutics. J Neuroimmunol 201–202:50–56

    Article  PubMed  CAS  Google Scholar 

  • Hirai M, Kadowaki N, Kitawaki T, Fujita H, Takaori-Kondo A, Fukui R et al (2011) Bortezomib suppresses function and survival of plasmacytoid dendritic cells by targeting intracellular trafficking of Toll-like receptors and endoplasmic reticulum homeostasis. Blood 117(2):500–509

    Article  CAS  PubMed  Google Scholar 

  • Hofmann K, Clauder A-K, Manz RA (2018) Targeting B cells and plasma cells in autoimmune diseases. Front Immunol 9:835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber EM, Groll M (2012) Inhibitors for the immuno- and constitutive proteasome: current and future trends in drug development. Angew Chem Int Ed Engl 51(35):8708–8720

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa HT, Conley T, Muchamuel T, Jiang J, Lee S, Owen T et al (2012) Beneficial effect of novel proteasome inhibitors in murine lupus via dual inhibition of type I interferon and autoantibody-secreting cells. Arthritis Rheumatol 64(2):493–503

    Article  CAS  Google Scholar 

  • Inshaw JRJ, Cutler AJ, Burren OS, Stefana MI, Todd JA (2018) Approaches and advances in the genetic causes of autoimmune disease and their implications. Nat Immunol 19(7):674–684

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal P, Davies SM, Grimley MS, Jordan MB, Curtis BR, Jodele S et al (2014) Bortezomib for refractory autoimmunity in pediatrics. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant 20(10):1654–1659

    Article  CAS  Google Scholar 

  • Khodadadi L, Cheng Q, Alexander T, Sercan-Alp Ö, Klotsche J, Radbruch A et al (2015) Bortezomib plus continuous B cell depletion results in sustained plasma cell depletion and amelioration of lupus nephritis in NZB/W F1 mice. PLoS ONE 10(8):e0135081

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kincaid EZ, Che JW, York I, Escobar H, Reyes-Vargas E, Delgado JC et al (2011) Mice completely lacking immunoproteasomes show major changes in antigen presentation. Nat Immunol 13(2):129–135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kloetzel PM (2004) Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat Immunol 5(7):661–9

    Article  CAS  PubMed  Google Scholar 

  • Kohler S, Losen M, Alexander T, Hiepe F, Meisel A (2016) Myasthenia gravis: subgroup classifications. Lancet Neurol (england) 15:356–357

    Article  Google Scholar 

  • Kohler S, Märschenz S, Grittner U, Alexander T, Hiepe F, Meisel A (2019) Bortezomib in antibody-mediated autoimmune diseases (TAVAB): study protocol for a unicentric, non-randomised, non-placebo controlled trial. BMJ Open 9(1):e024523

    Article  PubMed  PubMed Central  Google Scholar 

  • Köller H, Kieseier BC, Jander S, Hartung H-P (2005) Chronic inflammatory demyelinating polyneuropathy. N Engl J Med 352(13):1343–1356

    Article  PubMed  Google Scholar 

  • Lassoued S, Moyano C, Beldjerd M, Pauly P, Lassoued D, Billey T (2019) Bortezomib improved the joint manifestations of rheumatoid arthritis in three patients. Jt Bone Spine 86(3):381–382

    Article  CAS  Google Scholar 

  • Lee S-W, Kim J-H, Park Y-B, Lee S-K (2009) Bortezomib attenuates murine collagen-induced arthritis. Ann Rheum Dis 68(11):1761–1767

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Rui K, Deng J, Tian J, Wang X, Wang S et al (2015) Th17 cells play a critical role in the development of experimental Sjögren’s syndrome. Ann Rheum Dis 74(6):1302–1310

  • Liu Y, Wu J, Wu H, Wang T, Gan H, Zhang X et al (2009) UCH-L1 expression of podocytes in diseased glomeruli and in vitro. J Pathol 217(5):642–653

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Li J, Chen M, Kuang L (2016) Bortezomib followed by autologous stem cell transplantation in a patient with rheumatoid arthritis: a case report and review of the literature. Medicine (Baltimore) 95(52):e5760

    Article  CAS  Google Scholar 

  • Luo H, Wu Y, Qi S, Wan X, Chen H, Wu J (2001) A proteasome inhibitor effectively prevents mouse heart allograft rejection. Transplantation 72(2):196–202

    Article  CAS  PubMed  Google Scholar 

  • Matrat A, Veysseyre-Balter C, Trolliet P, Villar E, Dijoud F, Bienvenu J et al (2011) Simultaneous detection of anti-C1q and anti-double stranded DNA autoantibodies in lupus nephritis: predictive value for renal flares. Lupus 20(1):28–34

    Article  CAS  PubMed  Google Scholar 

  • Mazepa MA, Raval JS, Moll S, Ma A, Park YA (2014) Bortezomib induces clinical remission and reduction of ADAMTS13 inhibitory antibodies in relapsed refractory idiopathic thrombotic thrombocytopenic purpura. Br J Haematol (england) 164:900–902

    Article  CAS  Google Scholar 

  • McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365(23):2205–2219

    Article  CAS  PubMed  Google Scholar 

  • Mei HE, Wirries I, Frölich D, Brisslert M, Giesecke C, Grün JR et al (2015) A unique population of IgG-expressing plasma cells lacking CD19 is enriched in human bone marrow. Blood 125(11):1739–1748

    Article  CAS  PubMed  Google Scholar 

  • Mondanelli G, Albini E, Pallotta MT, Volpi C, Chatenoud L, Kuhn C et al (2017) The proteasome inhibitor bortezomib controls indoleamine 2,3-dioxygenase 1 breakdown and restores immune regulation in autoimmune diabetes. Front Immunol 8:428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moran E, Carbone F, Augusti V, Patrone F, Ballestrero A, Nencioni A (2012) Proteasome inhibitors as immunosuppressants: biological rationale and clinical experience. Semin Hematol 49(3):270–276

    Article  CAS  PubMed  Google Scholar 

  • Motte J, Fisse AL, Köse N, Grüter T, Mork H, Athanasopoulos D et al (2021) Treatment response to cyclophosphamide, rituximab, and bortezomib in chronic immune-mediated sensorimotor neuropathies: a retrospective cohort study. Ther Adv Neurol Disord [internet] 14:1756286421999631–1756286421999631

    Google Scholar 

  • Muchamuel T, Basler M, Aujay MA, Suzuki E, Kalim KW, Lauer C et al (2009) A selective inhibitor of the immunoproteasome subunit LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med 15(7):781–787

    Article  CAS  PubMed  Google Scholar 

  • Nalepa G, Rolfe M, Harper JW (2006) Drug discovery in the ubiquitin–proteasome system. Nat Rev Drug Discov 5(7):596–613

    Article  CAS  PubMed  Google Scholar 

  • Nencioni A, Garuti A, Schwarzenberg K, Cirmena G, Dal Bello G, Rocco I et al (2006) Proteasome inhibitor-induced apoptosis in human monocyte-derived dendritic cells. Eur J Immunol 36(3):681–689

    Article  CAS  PubMed  Google Scholar 

  • Neubert K, Meister S, Moser K, Weisel F, Maseda D, Amann K et al (2008) The proteasome inhibitor bortezomib depletes plasma cells and protects mice with lupus-like disease from nephritis. Nat Med 14(7):748–755

    Article  CAS  PubMed  Google Scholar 

  • Oliveira RC, Oliveira IS, Santiago MB, Sousa Atta MLB, Atta AM (2015) High avidity dsDNA autoantibodies in Brazilian women with systemic lupus erythematosus: correlation with active disease and renal dysfunction. J Immunol Res 2015:814748

    PubMed  PubMed Central  Google Scholar 

  • Pallotta MT, Orabona C, Volpi C, Vacca C, Belladonna ML, Bianchi R et al (2011) Indoleamine 2,3-dioxygenase is a signaling protein in long-term tolerance by dendritic cells. Nat Immunol 12(9):870–878

    Article  CAS  PubMed  Google Scholar 

  • Palombella VJ, Conner EM, Fuseler JW, Destree A, Davis JM, Laroux FS et al (1998) Role of the proteasome and NF-kappaB in streptococcal cell wall-induced polyarthritis. Proc Natl Acad Sci USA 95(26):15671–15676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patriquin CJ, Thomas MR, Dutt T, McGuckin S, Blombery PA, Cranfield T et al (2016) Bortezomib in the treatment of refractory thrombotic thrombocytopenic purpura. Br J Haematol 173(5):779–785

    Article  CAS  PubMed  Google Scholar 

  • Paul S (2008) Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. BioEssays 30(11–12):1172–1184

    Article  CAS  PubMed  Google Scholar 

  • Pitarokoili K, Yoon M-S, Kröger I, Reinacher-Schick A, Gold R, Schneider-Gold C (2017) Severe refractory CIDP: a case series of 10 patients treated with bortezomib. J Neurol [internet] 264(9):2010–2020

    Article  CAS  Google Scholar 

  • Polzer K, Neubert K, Meister S, Frey B, Baum W, Distler JH et al (2011) Proteasome inhibition aggravates tumor necrosis factor-mediated bone resorption in a mouse model of inflammatory arthritis. Arthritis Rheumatol 63(3):670–680

    Article  CAS  Google Scholar 

  • Qureshi AA, Tan X, Reis JC, Badr MZ, Papasian CJ, Morrison DC et al (2011) Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis 10:177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ratnasingam S, Walker PA, Tran H, Kaplan ZS, McFadyen JD, Tran H et al (2016) Bortezomib-based antibody depletion for refractory autoimmune hematological diseases. Blood Adv 1(1):31–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson PG, Sonneveld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T et al (2005) Bortezomib or high-dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352(24):2487–2498

    Article  CAS  PubMed  Google Scholar 

  • Sahashi K, Engel AG, Lambert EH, Howard FMJ (1980) Ultrastructural localization of the terminal and lytic ninth complement component (C9) at the motor end-plate in myasthenia gravis. J Neuropathol Exp Neurol 39(2):160–172

    Article  CAS  PubMed  Google Scholar 

  • Schlafer D, Shah KS, Panjic EH, Lonial S (2017) Safety of proteasome inhibitors for treatment of multiple myeloma. Expert Opin Drug Saf 16(2):167–183

    CAS  PubMed  Google Scholar 

  • Schmidt N, Gonzalez E, Visekruna A, Kühl AA, Loddenkemper C, Mollenkopf H et al (2010) Targeting the proteasome: partial inhibition of the proteasome by bortezomib or deletion of the immunosubunit LMP7 attenuates experimental colitis. Gut 59(7):896–906

    Article  CAS  PubMed  Google Scholar 

  • Schneider-Gold C, Reinacher-Schick A, Ellrichmann G, Gold R (2017) Bortezomib in severe MuSK-antibody positive myasthenia gravis: first clinical experience. Ther Adv Neurol Disord 10(10):339–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segarra A, Arredondo KV, Jaramillo J, Jatem E, Salcedo MT, Agraz I et al (2020) Efficacy and safety of bortezomib in refractory lupus nephritis: a single-center experience. Lupus 29(2):118–125

    Article  CAS  PubMed  Google Scholar 

  • Seifert U, Bialy LP, Ebstein F, Bech-Otschir D, Voigt A, Schröter F et al (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142(4):613–624

    Article  CAS  PubMed  Google Scholar 

  • Shiono H, Roxanis I, Zhang W, Sims GP, Meager A, Jacobson LW et al (2003) Scenarios for autoimmunization of T and B cells in myasthenia gravis. Ann N Y Acad Sci 998:237–256

    Article  CAS  PubMed  Google Scholar 

  • Shortt J, Oh DH, Opat SS (2013) ADAMTS13 antibody depletion by bortezomib in thrombotic thrombocytopenic purpura. N Engl J Med (united States) 369:90–92

    Article  CAS  Google Scholar 

  • Sun K, Welniak LA, Panoskaltsis-Mortari A, O’Shaughnessy MJ, Liu H, Barao I et al (2004) Inhibition of acute graft-versus-host disease with retention of graft-versus-tumor effects by the proteasome inhibitor bortezomib. Proc Natl Acad Sci USA 101(21):8120–8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teng YKO, Verburg RJ, Verpoort KN, Diepenhorst GMP, Bajema IM, van Tol MJD et al (2007) Differential responsiveness to immunoablative therapy in refractory rheumatoid arthritis is associated with level and avidity of anti-cyclic citrullinated protein autoantibodies: a case study. Arthritis Res Ther 9(5):R106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Theofilopoulos AN, Dixon FJ (1985) Murine models of systemic lupus erythematosus. Adv Immunol 37:269–390

    Article  CAS  PubMed  Google Scholar 

  • Thibaudeau TA, Smith DM (2019) A Practical review of proteasome pharmacology. Pharmacol Rev 71:170–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokoyoda K, Hauser AE, Nakayama T, Radbruch A (2010) Organization of immunological memory by bone marrow stroma. Nat Rev Immunol [internet] 10(3):193–200. https://doi.org/10.1038/nri2727

    Article  CAS  Google Scholar 

  • van Balen T, Schreuder MF, de Jong H, van de Kar NCAJ (2014) Refractory thrombotic thrombocytopenic purpura in a 16-year-old girl: successful treatment with bortezomib. Eur J Haematol 92(1):80–82

    Article  PubMed  Google Scholar 

  • van Dam LS, Osmani Z, Kamerling SWA, Kraaij T, Bakker JA, Scherer HU et al (2020) A reverse translational study on the effect of rituximab, rituximab plus belimumab, or bortezomib on the humoral autoimmune response in SLE. Rheumatology (oxford) 59(10):2734–2745

    Article  CAS  Google Scholar 

  • van der Heijden JW, Oerlemans R, Lems WF, Scheper RJ, Dijkmans BAC, Jansen G (2009) The proteasome inhibitor bortezomib inhibits the release of NFkappaB-inducible cytokines and induces apoptosis of activated T cells from rheumatoid arthritis patients. Clin Exp Rheumatol 27(1):92–98

    PubMed  Google Scholar 

  • Vanderlugt CL, Rahbe SM, Elliott PJ, Dal Canto MC, Miller SD (2000) Treatment of established relapsing experimental autoimmune encephalomyelitis with the proteasome inhibitor PS-519. J Autoimmun 14(3):205–211

    Article  CAS  PubMed  Google Scholar 

  • Verbrugge SE, Scheper RJ, Lems WF, de Gruijl TD, Jansen G (2015) Proteasome inhibitors as experimental therapeutics of autoimmune diseases. Arthritis Res Ther 17(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdu EF, Danska JS (2018) Common ground: shared risk factors for type 1 diabetes and celiac disease. Nat Immunol 19(7):685–695

    Article  CAS  PubMed  Google Scholar 

  • Vinayek N, Sharma V (2014) A combination of bortezomib and rituximab yields a dramatic response in a woman with highly refractory immune thrombocytopenic purpura: a case report. J Med Case Rep 8:19

    Article  PubMed  PubMed Central  Google Scholar 

  • Vrolix K, Fraussen J, Molenaar PC, Losen M, Somers V, Stinissen P et al (2010) The auto-antigen repertoire in myasthenia gravis. Autoimmunity 43(5–6):380–400

    Article  CAS  PubMed  Google Scholar 

  • Wahren-Herlenius M, Dörner T (2013) Immunopathogenic mechanisms of systemic autoimmune disease. Lancet (london, England) 382(9894):819–831

    Article  CAS  Google Scholar 

  • Wang L, Wang F-S, Gershwin ME (2015a) Human autoimmune diseases: a comprehensive update. J Intern Med 278(4):369–395

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Zhou W, Zhang Z (2015b) Successful treatment of warm-type haemolytic anaemia with bortezomib in a rituximab-failed systemic lupus erythematosus patient. Rheumatology (oxford) 54:194–195

    Article  CAS  Google Scholar 

  • Xiao F, Lin X, Tian J, Wang X, Chen Q, Rui K et al (2017) Proteasome inhibition suppresses Th17 cell generation and ameliorates autoimmune development in experimental Sjögren’s syndrome. Cell Mol Immunol 14(11):924–934

    Article  CAS  PubMed Central  Google Scholar 

  • Yanaba K, Asano Y, Tada Y, Sugaya M, Kadono T, Sato S (2012) Proteasome inhibitor bortezomib ameliorates intestinal injury in mice. PLoS ONE 7(3):e34587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yannaki E, Papadopoulou A, Athanasiou E, Kaloyannidis P, Paraskeva A, Bougiouklis D et al (2010) The proteasome inhibitor bortezomib drastically affects inflammation and bone disease in adjuvant-induced arthritis in rats. Arthritis Rheumatol 62(11):3277–3288

    Article  CAS  Google Scholar 

  • Yates S, Matevosyan K, Rutherford C, Shen Y-M, Sarode R (2014) Bortezomib for chronic relapsing thrombotic thrombocytopenic purpura: a case report. Transfusion 54(8):2064–2067

    Article  PubMed  Google Scholar 

  • Zhang C, Tian D-C, Yang C-S, Han B, Wang J, Yang L et al (2017) Safety and efficacy of bortezomib in patients with highly relapsing neuromyelitis optica spectrum disorder. JAMA Neurol 74(8):1010–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinser E, Rössner S, Littmann L, Lüftenegger D, Schubert U, Steinkasserer A (2009) Inhibition of the proteasome influences murine and human dendritic cell development in vitro and in vivo. Immunobiology 214(9–10):843–851

    Article  CAS  PubMed  Google Scholar 

  • Zollner TM, Podda M, Pien C, Elliott PJ, Kaufmann R, Boehncke W-H (2002) Proteasome inhibition reduces superantigen-mediated T cell activation and the severity of psoriasis in a SCID-hu model. J Clin Investig 109(5):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Sahebkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalesi, N., Korani, S., Korani, M. et al. Bortezomib: a proteasome inhibitor for the treatment of autoimmune diseases. Inflammopharmacol 29, 1291–1306 (2021). https://doi.org/10.1007/s10787-021-00863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10787-021-00863-2

Keywords

Navigation